- 博客(24)
- 收藏
- 关注
原创 【高等数学&学习记录】无穷小的比较
1 知识点定义:如果 limβα=0\lim \frac{\beta}{\alpha}=0limαβ=0,就说 β\betaβ 是比 α\alphaα 高阶的无穷小,记作 β=o(α)\beta=o(\alpha )β=o(α)如果 limβα=∞\lim \frac{\beta}{\alpha}=\inftylimαβ=∞,就说 β\betaβ 是比 α\alphaα 低阶的无穷小。如果 limβα=c≠0\lim \frac{\beta}{\alpha}=c\neq 0limαβ=
2024-10-23 22:09:57 498
原创 【高等数学&学习记录】极限存在准则,两个重要极限
如果数列xnynzn满足下列条件:(1) 从某项起,即∃n0∈N, 当nn0时,有yn≤xn≤zn;(2)limn→∞ynalimn→∞zna那么数列xn的极限存在,且limx→∞xna。如果(1) 当x∈U˚x0r(或xM) 时,gx≤fx≤hx;
2024-10-19 09:32:07 1321
原创 【高等数学&学习记录】极限运算法则
定理1:有限个无穷小的和也是无穷小。定理2:有界函数与无穷小的乘积是无穷小。推论1:常数与无穷小的乘积是无穷小。推论2:有限个无穷小的乘积也是无穷小。定理3:如果 limf(x)=A\lim f(x)=Alimf(x)=A, limg(x)=B\lim g(x)=Blimg(x)=B, 那么(1) lim[f(x)±g(x)]=limf(x)±limg(x)=A±B\lim [f(x)\pm g(x)]=\lim f(x)\pm \lim g(x
2024-10-17 20:33:52 513
原创 【高等数学&学习记录】函数的极限
一、知识点(一)知识结构#mermaid-svg-Dz0Ns0FflWSBWY50 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Dz0Ns0FflWSBWY50 .error-icon{fill:#552222;}#mermaid-svg-Dz0Ns0FflWSBWY50 .error-text{fill:#552222;stroke:#552222;}#merm
2024-10-05 16:18:48 906
原创 【高等数学&学习记录】数列的极限
设xnxn为一数列,如果存在常数aaa,对于任意给定的正数ϵ\epsilonϵ(不论它多么小),总存在正整数NNN,使得当nNn>NnN时,不等式∣xn−a∣ϵxn−aϵ都成立,那么就称常数aaa是数列xnxn的极限,或者称数列xnxn收敛于aaa,记为limn→∞xnan→∞limxna或xn→an→∞xn→an→∞。
2024-09-19 22:11:35 883
原创 【高等数学&学习记录】函数
【高等数学&学习记录】函数从事测绘工作多年,深刻感受到基础知识的重要及自身在这方面的短板。为此,打算重温测绘工作所需基础知识。练好基本功,为测绘工作赋能。1 知识点1.1 函数设数集D⊂RD\subset RD⊂R,称映射f:D→Rf:D\rightarrow Rf:D→R,为定义在DDD上的函数,简记为y=f(x)y=f(x)y=f(x),x∈Dx\in Dx∈D。xxx称为自变量。yyy称为因变量。DDD称为定义域,记作DfD_fDf。yyy的全体所构成的集合称为函数f
2024-09-14 20:10:14 1114
原创 【高等数学&学习记录】映射
从事测绘工作多年,深刻感受到基础知识的重要及自身在这方面的短板。为此,打算重温测绘工作所需基础知识。练好基本功,为测绘工作赋能。
2024-09-06 08:58:34 1133
原创 【高等数学&学习记录】集合
并集由所有属于AAA或者属于BBB的元素组成的集合,称为AAA与BBB的并集,记作A∪BA\cup BA∪B。交集由既属于AAA又属于BBB的元素组成的集合,称为AAA与BBB的交集,记作A∩BA\cap BA∩B。差集由所有属于AAA而不属于BBB的元素组成的集合,称为AAA与BBB的差集,记作A∖BA\setminus BA∖B。余集(补集)有时,研究某个问题限定在一个大的集合III中,所研究的其他集合AAA是III的子集,此时,称集合III为全集或基本集,称I∖AI\setminus AI∖A
2024-09-05 20:58:43 1571
原创 【线性代数 & C++】求逆矩阵
由nnn阶方阵AAA的元素构成的行列式(各元素位置不变),称为AAA的行列式,记作∣A∣A或detAdetAdetA行列式∣A∣A各元素的代数余子式AijA_{ij}Aij构成的如下矩阵A∗A11A21⋯An1A12A22⋯An2⋮⋮⋮A1nA2n⋯AnnA∗A11A12⋮A1nA21A22⋮A2n⋯⋯。
2024-04-23 12:34:54 2222
原创 【线性代数|C++】矩阵乘法
数λ\lambdaλ与矩阵AAA的乘积记作λA\lambda AλA或AλA\lambdaAλ,规定λAAλλa11λa12⋯λa1nλa21λa22⋯λa2n⋮⋮⋮λam1λam2⋯λamnλAAλλa11λa21⋮λam1λa12λa22⋮λam2⋯⋯⋯λa1nλa2n⋮λa。
2024-04-15 19:45:44 1475
原创 【线性代数|C++】同型矩阵及矩阵加法
由m×nm\times nm×n个数aiji12⋯m;j12⋯n排成的mmm行nnn列的数表a11a12⋯a1na21a22⋯a2n⋮⋮⋮am1am2⋯amna11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn称为mmm行n。
2024-04-04 16:42:30 940
原创 【线性代数|C++】克拉默法则
设含有nnn个未知数x1x2⋯xnx1x2⋯xn的nnn个线性方程的方程组a11x1a12x2⋯a1nxnb1a21x1a22x2⋯a2nxnb2⋯⋯⋯an1x1an2x2⋯annxnbn(1)⎩⎨⎧a11x1a12x2⋯a1nxnb1a21x1a22x2。
2024-03-27 21:43:05 2194 2
原创 【线性代数 | C++】行列式按行(列)展开
在nnn阶行列式中,把ij(i,j)ij元aija_{ij}aij所在的第iii行和第jjj列划去后,留下来的n−1n-1n−1阶行列式叫做ij(i,j)ij元aija_{ij}aij的余子式,记作MijM_{ij}Mij记Aij−1ijMijAij−1ijMijAijA_{ij}Aij叫做ij(i,j)ij元的代数余子式例如四阶行列式D∣a11a。
2024-03-25 13:46:50 899
原创 线性代数|行列式对换及行列式性质
摘自:同济大学数学系编. 工程数学 线性代数 第五版. 北京: 高等教育出版社。**若行列式的某一列(行)的元素都是两数之和,例如第。
2024-03-21 21:10:14 2030
原创 线性代数|行列式定义及其值
设有n2n^2n2个数,排成nnn行nnn列的数表a11a12⋯a1na21a22⋯a2n⋮⋮⋮an1an2⋯anna11a21⋮an1a12a22⋮an2⋯⋯⋯a1na2n⋮ann作出表中位于不同行不同列的nnn个数的乘积,并冠以符号−1t(-1)^t−1t,得到形如−1ta1p1a2p。
2024-03-19 21:23:43 940
原创 初中数学|求与动点相关的两线段长度之和的最小值
周末在家,看到孩子试卷上的一道几何题,求与动点相关的两线段长度之和的最小值。“求与动点相关的两线段长度之和的最小值”的问题,绝大多数是通过“两点之间,线段最短”的原理解决:即让两线段相连,显然,此时的线段长度之和并不是最小。,我们应该敏锐的想到这是等边三角形的一半。要多多利用等边三角形,因为它可以提供更多的角度值和边长值。,实现了“两线段相连,两段为固定点,中间为动点”。三点中,有两点为动点,不具备求解的基本条件。再次利用等边三角形边相等的特点,在。都是等边三角形,从图中容易看出,,线段长度之和最小。
2024-03-11 23:10:35 1867 1
原创 数值的不同进制转换(C语言实现)
可以认为,“x进制数”是由“0”到“x−1”个连续的数字中的1个或几个数字(字符)组成的逢“x”进位的数字。常见的进制有二进制、十进制、八进制、十六进制等。由0和1组成,逢2进位。如:1、、11、……。由0、1、2、3、4、5、6、7组成,逢8进位。如:1、2、3、4、5、6、7、、11、……。由0、1、2、3、4、5、6、7、8、9组成,逢10进位。如:1、2、3、4、5、6、7、8、9、、11、……。
2024-01-24 20:07:49 945
原创 也说充分必要条件
习惯于用通俗语言理解知识。以前总是对“充分”、“必要”条件傻傻分不清。今天灵光一现,感觉突然理解了,在此分享一下。假定:A是条件,B是结果。一、充分条件“充分”换个词叫做“足够”,也就是说,有条件A就“足够”了,完全能够推导出结论B。此时称A是B的充分条件。二、必要条件“必要”换个词叫做“离不开”,也就是说,想要得到结论B,一定“离不开”条件A;或者说有结论B,一定有条件A。此时称A是B的必要条件。三、充要条件以上两种情况都具备时,A就是B的充分必要条件,简称充要条件。不对之处,请批评
2021-10-17 22:11:46 981
空空如也
将读写Excel的功能封装到MFC DLL中
2022-09-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人