自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(45)
  • 收藏
  • 关注

原创 [高等数学] 定积分的概念与性质

设函数fx在ab上有界,在ab中任意插入若干个分点ax0​x1​x2​⋯xn−1​xn​b把区间ab分成n个小区间x0​x1​x1​x2​⋯xn−1​xn​各小区间的长度依次为Δx1​x1​−x0​Δx2​x2​−x1​⋯Δxn​xn​−xn−1​在每个小区间xi−1​xi​上任取一点ξi​xi−1​≤。

2025-02-27 20:48:04 556

原创 [高等数学] 有理函数的积分

两个多项式的商 P(x)Q(x)\frac{P(x)}{Q(x)}Q(x)P(x)​ 称为有理函数,又称有理分式。当分子多项式 P(x)P(x)P(x) 的次数小于分母多项式 Q(x)Q(x)Q(x) 的次数时,称这有理函数为真分式,否则称为假分式。对于真分式 P(x)Q(x)\frac{P(x)}{Q(x)}Q(x)P(x)​,如果分母可分解为两个多项式的乘积 Q(x)=Q1(x)Q2(x)Q(x)=Q_1(x)Q_2(x)Q(x)=Q1​(x)Q2​(x),且 Q1(x)Q_1(x)Q1​(x) 与 Q

2025-02-25 21:43:17 599

原创 [数学] 常用数学公式(逐步更新完善)

1sinx​2sin2x​cos2x​sec22x​2tan2x​​1tan22x​2tan2x​​​(2cosx​cos22x​−sin22x​sec22x​1−tan22x​​1tan22x​1−tan22x​​​。

2025-02-24 21:48:34 905

原创 [高等数学] 分部积分法

设函数uux及vvx具有连续函数。那么,两个函数乘积的导数公式为uv′u′vuv′移项得uv′uv′−u′v对上述等式两边求不定积分,得∫uv′dxuv−∫u′vdx1公式1称为为简便起见,公式1∫udvuv−∫vdu2。

2025-02-16 21:54:48 328

原创 [高等数学]换元积分法

设 f(u)f(u)f(u) 具有原函数,u=φ(x)u=\varphi(x)u=φ(x) 可导,则有换元公式:∫f[φ(x)]φ′(x)dx=[∫f(u)du]u=φ(x).\int f[\varphi(x)]\varphi '(x)dx=[\int f(u)du]_{u=\varphi(x)}.∫f[φ(x)]φ′(x)dx=[∫f(u)du]u=φ(x)​.设 x=φ(x)x=\varphi(x)x=φ(x) 是单调的、可导的函数,并且 φ′(t)≠0\varphi'(t)\neq 0φ′(t)=0

2025-02-15 21:42:39 498

原创 [高等数学]不定积分的概念与性质

如果在区间 III 上,可导函数 F(x)F(x)F(x) 的导函数为 f(x)f(x)f(x),即对任一 x∈Ix\in Ix∈I,都有 F′(x)=f(x)F'(x)=f(x)F′(x)=f(x) 或 dF(x)=f(x)dxdF(x)=f(x)dxdF(x)=f(x)dx,那么函数 F(x)F(x)F(x) 就称为 f(x)f(x)f(x)(或 f(x)dxf(x)dxf(x)dx)在区间 III 上的原函数。如果函数 f(x)f(x)f(x) 在区间 III 上连续,那么在区间 III 上存在可导函

2025-02-09 22:29:30 983

原创 [高等数学] 方程的近似解

确定一个区间ab,使所求的根是位于这个区间内的唯一实根,这一步称为。区间ab称为所求实根的。为了确定根的隔离区间,可以先较精确地画出yfx的图形,然后定出图形与x轴的大概位置。这种做法得不到精确的根,但一般可以确定根的隔离区间。

2025-02-09 14:34:16 786

原创 [高等数学]曲率

设函数 f(x)f(x)f(x) 在区间 (a,b)(a,b)(a,b) 内具有连续导数。在曲线 y=f(x)y=f(x)y=f(x) 上取固定点 M0(x0,y0)M_0(x_0,y_0)M0​(x0​,y0​) 作为度量弧长的基点,并规定依 xxx 增大的方向作为曲线的正向。对曲线上任一点 M(x,y)M(x,y)M(x,y),规定有向弧段 M0MM_0MM0​M 的值 sss 。设弧上一点 M′M'M′ 相对于点 MMM 的坐标增量为 (Δx,Δy)(\Delta x,\Delta y)(Δx,Δy)

2025-02-06 21:02:14 344

原创 [高等数学&学习记录]函数的极值与最大值最小值

设函数fx在点x0​的某邻域U˚x0​内有定义,如果对于去心邻域U˚x0​内的任一x,有fxfx0​或fxfx0​,那么就称fx0​是函数fx的一个极大值(或极小值)。函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。

2025-01-25 15:48:43 1339

原创 [高等数学&学习记录]函数的单调性与曲线的凹凸性

1 知识点1.1 函数单调性的判定法定理1设函数 y=f(x)y=f(x)y=f(x) 在 [a,b][a,b][a,b] 上连续,在 (a,b)(a,b)(a,b) 内可导.(1) 如果在 (a,b)(a,b)(a,b) 内,f′(x)>0f'(x)>0f′(x)>0,那么函数 y=f(x)y=f(x)y=f(x) 在 [a,b][a,b][a,b] 上单调增加;(2) 如果在 (a,b)(a,b)(a,b) 内,f′(x)<0f'(x)<0f′(x)<0,

2025-01-08 09:46:58 390

原创 [高等数学&学习记录] 泰勒公式

1 知识点1.1 要求为简化计算, 通常用多项式近似表达复杂函数:设函数 f(x)f(x)f(x) 在含有 x0x_0x0​ 的开区间内具有 (n+1)(n+1)(n+1) 阶导数, 试找出一个关于 (x−x0)(x-x_0)(x−x0​) 的 nnn 次多项式 pn(x)p_n(x)pn​(x) 近似表达 f(x)f(x)f(x);要求 pn(x)p_n(x)pn​(x) 与 f(x)f(x)f(x) 之差是比 (x−x0)n(x-x_0)^n(x−x0​)n 高阶的无穷小, 并给出误差 ∣f(x

2024-12-03 18:21:43 1378 2

原创 【高等数学&学习记录】洛必达法则

一、知识点定理1(洛必达法则)设(1) 当 x→ax\rightarrow ax→a 时,函数 f(x)f(x)f(x) 及 F(x)F(x)F(x) 都趋于零;(2) 在点 aaa 的某去心邻域内,f′(x)f'(x)f′(x) 及 F′(x)F'(x)F′(x) 都存在且 F′(x)≠0F'(x)\neq 0F′(x)=0;(3) lim⁡x→af′(x)F′(x)\lim_{x\rightarrow a}\frac{f'(x)}{F'(x)}limx→a​F′(x)f′(x)​ 存在(

2024-11-28 20:35:33 2159

原创 【高等数学&学习记录】微分中值定理

一、知识点(一)罗尔定理费马引理设函数 f(x)f(x)f(x) 在点 x0x_0x0​ 的某邻域 U(x0)U(x_0)U(x0​) 内有定义,并且在 x0x_0x0​ 处可导,如果对任意的 x∈U(x0)x\in U(x_0)x∈U(x0​) ,有 f(x)≤f(x0)f(x)\leq f(x_0)f(x)≤f(x0​)(或 f(x)≥f(x0)f(x)\geq f(x_0)f(x)≥f(x0​)) ,那么 f′(x0)=0f'(x_0)=0f′(x0​)=0.罗尔定理如果函数 f(

2024-11-28 19:49:39 1413 3

原创 【高等数学&学习记录】函数的微分

一、知识点(一)微分的定义设函数 y=f(x)y=f(x)y=f(x) 在某区间内有定义,x0x_0x0​ 及 x0+Δxx_0+\Delta xx0​+Δx 在这区间内,如果增量 Δy=f(x0+Δ)−f(x0)\Delta y=f(x_0+\Delta)-f(x_0)Δy=f(x0​+Δ)−f(x0​) 可表示为 Δy=AΔ+o(Δ)\Delta y = A\Delta + o(\Delta)Δy=AΔ+o(Δ),其中 AAA 是不依赖于 Δx\Delta xΔx 的常数,那么称函数 y=f(x

2024-11-25 20:33:13 1555

原创 【高等数学&学习记录】隐函数及由参数方程所确定的函数的导数、相关变化率

一、知识点(一)隐函数的导数显函数对于形如 y=sinxy=sinxy=sinx 这种等号左端是因变量,右端是含有自变量的式子,当自变量取定义域内任一值时,由这个式子能确定对应的函数值,这种方式表达的函数叫做显函数.隐函数对于形如 x+y3−1=0x+y^3-1=0x+y3−1=0 这种形式的函数称为隐函数.隐函数的显化把一个隐函数化成显函数叫做隐函数的显化. 但是,有时隐函数的显化是有困难的,甚至是不能的.计算隐函数的导数方程两边分别对 xxx 求导数,以获得 dydx\

2024-11-20 19:45:17 718

原创 【高等数学&学习记录】高阶导数

一、知识点(一)高阶导数导数的导数叫做二阶导数,二阶导数的导数叫做三阶导数,三阶导数的导数叫做四阶导数,⋯\cdots⋯,(n−1)(n-1)(n−1) 阶导数的导数叫做 nnn 阶导数.二阶及二阶以上的导数统称高阶导数.(二)莱布尼茨公式(uv)(n)=∑k=0nCnku(n−k)v(k)(uv)^{(n)}=\sum_{k=0}^nC^k_nu^{(n-k)}v^{(k)}(uv)(n)=∑k=0n​Cnk​u(n−k)v(k)二、练习题求下列函数的二阶导数:(1) y=

2024-11-18 18:51:55 2007

原创 【高等数学&学习记录】函数的求导法则

一、知识点(一)常数和基本初等函数的导数公式(C)′=0(C)'=0(C)′=0(xn)′=nxn−1(x^n)'=nx^{n-1}(xn)′=nxn−1(sinx)′=cosx(sinx)'=cosx(sinx)′=cosx(cosx)′=−sinx(cosx)'=-sinx(cosx)′=−sinx(tanx)′=sec2x(tanx)'=sec^2x(tanx)′=sec2x(cotx)′=−csc2x(cotx)'=-csc^2x(cotx)′=−csc2x(secx)′=sec

2024-11-16 18:42:24 2569

原创 【高等数学&学习记录】导数概念

一、知识点(一)导数定义定义设函数 y=f(x)y=f(x)y=f(x) 在点 x0x_0x0​ 的某个邻域内有定义,当自变量 xxx 在 x0x_0x0​ 处取得增量 Δx\Delta xΔx(点 x0+Δxx_0+\Delta xx0​+Δx 仍在该邻域内)时,相应的函数取得增量 Δy=f(x0+Δx)−f(x0)\Delta y=f(x_0+\Delta x)-f(x_0)Δy=f(x0​+Δx)−f(x0​);如果当 Δx→0\Delta x\rightarrow 0Δx→0 时 Δy\D

2024-11-14 18:49:50 1721

原创 【高等数学&学习记录】闭区间上连续函数的性质

上连续,且在这区间的端点取不同的函数值。在闭区间上连续的函数必取得介于最大值。上有定义,如果对于任意给定的正数。上连续,那么它在该区间上一致连续.定理4(一致连续性定理)

2024-11-12 19:29:27 1577

原创 【高等数学&学习记录】连续函数的运算与初等函数的连续性

​f(x)−g(x)​​]/2ψ(x)=[f(x)+g(x)−∣f(x)−g(x)∣]/2\quad \psi(x)=[f(x)+g(x)-\begin{vmatrix}f(x)-g(x)\end{vmatrix}]/2ψ(x)=[f(x)+g(x)−​f(x)−g(x)​​]/2∴φ(x)\therefore \varphi (x)∴φ(x) 与 ψ(x)\psi(x)ψ(x) 在点 x0x_0x0​ 也连续.求下列极限:(1) lim⁡x→0x2−2x+5\lim_{x\rightarro

2024-11-11 20:54:37 1264

原创 【高等数学&学习记录】函数的连续性与间断点

设函数fxf(x)fx在点x0x_0x0​的某去心邻域内有定义。如果函数fxf(x)fx有下列三种情况之一:(1) 在xx0x=x_0xx0​没有定义;(2) 虽在xx0x=x_0xx0​有定义,但lim⁡x→x0fxlimx→x0​​fx不存在;(3) 虽在xx0x=x_0xx0​有定义,且lim⁡x→x0fxlimx→x0​​fx存在,但lim⁡x→x0。

2024-11-09 19:50:53 2954

原创 【高等数学&学习记录】无穷小的比较

1 知识点定义:如果 lim⁡βα=0\lim \frac{\beta}{\alpha}=0limαβ​=0,就说 β\betaβ 是比 α\alphaα 高阶的无穷小,记作 β=o(α)\beta=o(\alpha )β=o(α)如果 lim⁡βα=∞\lim \frac{\beta}{\alpha}=\inftylimαβ​=∞,就说 β\betaβ 是比 α\alphaα 低阶的无穷小。如果 lim⁡βα=c≠0\lim \frac{\beta}{\alpha}=c\neq 0limαβ​=

2024-10-23 22:09:57 1095

原创 【高等数学&学习记录】极限存在准则,两个重要极限

如果数列xn​yn​zn​满足下列条件:(1) 从某项起,即∃n0​∈N, 当nn0​时,有yn​≤xn​≤zn​;(2)limn→∞​yn​alimn→∞​zn​a那么数列xn​的极限存在,且limx→∞​xn​a。如果(1) 当x∈U˚x0​r(或​x​​M) 时,gx≤fx≤hx;

2024-10-19 09:32:07 2535

原创 【高等数学&学习记录】极限运算法则

定理1:有限个无穷小的和也是无穷小。定理2:有界函数与无穷小的乘积是无穷小。推论1:常数与无穷小的乘积是无穷小。推论2:有限个无穷小的乘积也是无穷小。定理3:如果 lim⁡f(x)=A\lim f(x)=Alimf(x)=A, lim⁡g(x)=B\lim g(x)=Blimg(x)=B, 那么(1) lim⁡[f(x)±g(x)]=lim⁡f(x)±lim⁡g(x)=A±B\lim [f(x)\pm g(x)]=\lim f(x)\pm \lim g(x

2024-10-17 20:33:52 702

原创 【高等数学&学习记录】无穷小与无穷大

如果函数。

2024-10-08 21:28:30 1998

原创 【高等数学&学习记录】函数的极限

一、知识点(一)知识结构#mermaid-svg-Dz0Ns0FflWSBWY50 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-Dz0Ns0FflWSBWY50 .error-icon{fill:#552222;}#mermaid-svg-Dz0Ns0FflWSBWY50 .error-text{fill:#552222;stroke:#552222;}#merm

2024-10-05 16:18:48 958

原创 【高等数学&学习记录】数列的极限

设xnxn​为一数列,如果存在常数aaa,对于任意给定的正数ϵ\epsilonϵ(不论它多么小),总存在正整数NNN,使得当nNn>NnN时,不等式∣xn−a∣ϵ​xn​−a​​ϵ都成立,那么就称常数aaa是数列xnxn​的极限,或者称数列xnxn​收敛于aaa,记为lim⁡n→∞xnan→∞lim​xn​a或xn→an→∞xn​→an→∞。

2024-09-19 22:11:35 985

原创 【高等数学&学习记录】函数

【高等数学&学习记录】函数从事测绘工作多年,深刻感受到基础知识的重要及自身在这方面的短板。为此,打算重温测绘工作所需基础知识。练好基本功,为测绘工作赋能。1 知识点1.1 函数设数集D⊂RD\subset RD⊂R,称映射f:D→Rf:D\rightarrow Rf:D→R,为定义在DDD上的函数,简记为y=f(x)y=f(x)y=f(x),x∈Dx\in Dx∈D。xxx称为自变量。yyy称为因变量。DDD称为定义域,记作DfD_fDf​。yyy的全体所构成的集合称为函数f

2024-09-14 20:10:14 1157

原创 【高等数学&学习记录】映射

从事测绘工作多年,深刻感受到基础知识的重要及自身在这方面的短板。为此,打算重温测绘工作所需基础知识。练好基本功,为测绘工作赋能。

2024-09-06 08:58:34 1212

原创 【高等数学&学习记录】集合

并集由所有属于AAA或者属于BBB的元素组成的集合,称为AAA与BBB的并集,记作A∪BA\cup BA∪B。交集由既属于AAA又属于BBB的元素组成的集合,称为AAA与BBB的交集,记作A∩BA\cap BA∩B。差集由所有属于AAA而不属于BBB的元素组成的集合,称为AAA与BBB的差集,记作A∖BA\setminus BA∖B。余集(补集)有时,研究某个问题限定在一个大的集合III中,所研究的其他集合AAA是III的子集,此时,称集合III为全集或基本集,称I∖AI\setminus AI∖A

2024-09-05 20:58:43 2196

原创 【线性代数 & C++】结合逆矩阵的克拉默法则

【代码】【线性代数 & C++】结合逆矩阵的克拉默法则。

2024-04-24 08:11:50 1074 3

原创 【线性代数 & C++】求逆矩阵

由nnn阶方阵AAA的元素构成的行列式(各元素位置不变),称为AAA的行列式,记作∣A∣​A​​或detAdetAdetA行列式∣A∣​A​​各元素的代数余子式AijA_{ij}Aij​构成的如下矩阵A∗A11A21⋯An1A12A22⋯An2⋮⋮⋮A1nA2n⋯AnnA∗​A11​A12​⋮A1n​​A21​A22​⋮A2n​​⋯⋯。

2024-04-23 12:34:54 2416

原创 【线性代数|C++】矩阵乘法

数λ\lambdaλ与矩阵AAA的乘积记作λA\lambda AλA或AλA\lambdaAλ,规定λAAλλa11λa12⋯λa1nλa21λa22⋯λa2n⋮⋮⋮λam1λam2⋯λamnλAAλ​λa11​λa21​⋮λam1​​λa12​λa22​⋮λam2​​⋯⋯⋯​λa1n​λa2n​⋮λa。

2024-04-15 19:45:44 1784

原创 【线性代数|C++】同型矩阵及矩阵加法

由m×nm\times nm×n个数aiji12⋯m;j12⋯n排成的mmm行nnn列的数表a11a12⋯a1na21a22⋯a2n⋮⋮⋮am1am2⋯amna11​a21​⋮am1​​a12​a22​⋮am2​​⋯⋯⋯​a1n​a2n​⋮amn​​称为mmm行n。

2024-04-04 16:42:30 1115

原创 【线性代数|C++】克拉默法则

设含有nnn个未知数x1x2⋯xnx1​x2​⋯xn​的nnn个线性方程的方程组a11x1a12x2⋯a1nxnb1a21x1a22x2⋯a2nxnb2⋯⋯⋯an1x1an2x2⋯annxnbn(1)⎩⎨⎧​a11​x1​a12​x2​⋯a1n​xn​b1​a21​x1​a22​x2​。

2024-03-27 21:43:05 2402 2

原创 【线性代数 | C++】行列式按行(列)展开

在nnn阶行列式中,把ij(i,j)ij元aija_{ij}aij​所在的第iii行和第jjj列划去后,留下来的n−1n-1n−1阶行列式叫做ij(i,j)ij元aija_{ij}aij​的余子式,记作MijM_{ij}Mij​记Aij−1ijMijAij​−1ijMij​AijA_{ij}Aij​叫做ij(i,j)ij元的代数余子式例如四阶行列式D∣a11a。

2024-03-25 13:46:50 1008

原创 线性代数|行列式对换及行列式性质

摘自:同济大学数学系编. 工程数学 线性代数 第五版. 北京: 高等教育出版社。**若行列式的某一列(行)的元素都是两数之和,例如第。

2024-03-21 21:10:14 3139

原创 线性代数|行列式定义及其值

设有n2n^2n2个数,排成nnn行nnn列的数表a11a12⋯a1na21a22⋯a2n⋮⋮⋮an1an2⋯anna11​a21​⋮an1​​a12​a22​⋮an2​​⋯⋯⋯​a1n​a2n​⋮ann​​作出表中位于不同行不同列的nnn个数的乘积,并冠以符号−1t(-1)^t−1t,得到形如−1ta1p1a2p。

2024-03-19 21:23:43 1085

原创 线性代数|逆序数

1。

2024-03-16 19:47:20 2020

原创 初中数学|求与动点相关的两线段长度之和的最小值

周末在家,看到孩子试卷上的一道几何题,求与动点相关的两线段长度之和的最小值。“求与动点相关的两线段长度之和的最小值”的问题,绝大多数是通过“两点之间,线段最短”的原理解决:即让两线段相连,显然,此时的线段长度之和并不是最小。,我们应该敏锐的想到这是等边三角形的一半。要多多利用等边三角形,因为它可以提供更多的角度值和边长值。,实现了“两线段相连,两段为固定点,中间为动点”。三点中,有两点为动点,不具备求解的基本条件。再次利用等边三角形边相等的特点,在。都是等边三角形,从图中容易看出,,线段长度之和最小。

2024-03-11 23:10:35 2630 1

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除