BZOJ1047: [HAOI2007]理想的正方形 单调队列

1047: [HAOI2007]理想的正方形

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 2684   Solved: 1450

Description

  有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值
的差最小。

Input

  第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每
行相邻两数之间用一空格分隔。
100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100

Output

  仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

Sample Input

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

Sample Output

1

题解:

先对每一行做单调队列:
用一个数组mn[i][j]维护以(i,j)为终点,在同一行中向前扩展n个数中最小的是多少,时间复杂度为O(n*m)
再对每一列做单调队列:
这时我们用数组mn[i][j]来维护以(i,j)为终点,向左上角扩展出一个n*n的正方形中最小的数是多少,这个怎么求呢?
因为我们已经处理出了在同一列上的每一个点向前扩展n个数中最小的数是多少,那么我们对同一列上连续n个点的mn[x][y]来做一个mn[i][j](x-n<x<=i,y-n<y<=j),时间复杂度也是O(n*m)
我们通过上述方法求出了每个(i,j)向左上扩展出一个n*n的正方形中的数字中的最小值

对于求最大值只需要再做一遍同样的操作,再开一个mx数组存就可以了。
此题的时间复杂度为O(n*m)
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1005;
const int inf=1707185547;
struct que{int v,pos;} q[N];
int n,m,s,ans=inf,mp[N][N],mn[N][N],mx[N][N];
int main()
{
	scanf("%d%d%d",&n,&m,&s);
	for(int i=1;i<=n;i++)
	for(int j=1;j<=m;j++)
	scanf("%d",&mp[i][j]);
	//横着做min
	for(int i=1;i<=n;i++)
	{
		int h=1,t=0;
		for(int j=1;j<=s;j++)
		{
			while(mp[i][j]<=q[t].v&&t>=h) t--;
			t++;
		    q[t].v=mp[i][j];
		    q[t].pos=j;
		}
		for(int j=s;j<=m;j++)
		{
			while(mp[i][j]<=q[t].v&&t>=h) t--;
			t++;
			q[t].v=mp[i][j];
			q[t].pos=j;
			while(q[h].pos<=j-s) h++;
			mn[i][j]=q[h].v;
		}
	}
	//竖着做min 
	for(int j=s;j<=m;j++)
	{
		int h=1,t=0;
		for(int i=1;i<=s;i++)
		{
			while(mn[i][j]<=q[t].v&&t>=h) t--;
			t++;
		    q[t].v=mn[i][j];
		    q[t].pos=i;
		}
		for(int i=s;i<=n;i++)
		{
			while(mn[i][j]<=q[t].v&&t>=h) t--;
			t++;
			q[t].v=mn[i][j];
			q[t].pos=i;
			while(q[h].pos<=i-s) h++;
			mn[i][j]=q[h].v;
		}
	}
	//横着做max 
	for(int i=1;i<=n;i++)
	{
		int h=1,t=0;
		for(int j=1;j<=s;j++)
		{
			while(mp[i][j]>=q[t].v&t>=h) t--;
			t++;
		    q[t].v=mp[i][j];
		    q[t].pos=j;
		}
		for(int j=s;j<=m;j++)
		{
			while(mp[i][j]>=q[t].v&&t>=h) t--;
			t++;
			q[t].v=mp[i][j];
			q[t].pos=j;
			while(q[h].pos<=j-s) h++;
			mx[i][j]=q[h].v;
		}
	}
	//竖着做max
	for(int j=s;j<=m;j++)
	{
		int h=1,t=0;
		for(int i=1;i<=s;i++)
		{
			while(mx[i][j]>=q[t].v&&t>=h) t--;
			t++;
		    q[t].v=mx[i][j];
		    q[t].pos=i;
		}
		for(int i=s;i<=n;i++)
		{
			while(mx[i][j]>=q[t].v&&t>=h) t--;
			t++;
			q[t].v=mx[i][j];
			q[t].pos=i;
			while(q[h].pos<=i-s) h++;
			mx[i][j]=q[h].v;
		}
	}
	for(int i=s;i<=n;i++)
	for(int j=s;j<=m;j++)
	ans=min(ans,mx[i][j]-mn[i][j]);
	printf("%d",ans);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值