布尔运算(给定一个布尔表达式和一个期望的布尔结果 result)

布尔运算

给定一个布尔表达式和一个期望的布尔结果 result,布尔表达式由 0 (false)、1 (true)、& (AND)、 | (OR) 和 ^ (XOR) 符号组成。实现一个函数,算出有几种可使该表达式得出 result 值的括号方法。
示例 1:
输入: s = “1^0|0|1”, result = 0
输出: 2
解释: 两种可能的括号方法是
1^(0|(0|1))
1^((0|0)|1)
示例 2:
输入: s = “0&0&0&1^1|0”, result = 1
输出: 10

这个题的leetcode题解写的超级清楚:直接看官方题解即可.

状态定义:dp[i][j][result=0/1]表示第i到j个数字计算结果为result的方案数。
状态转移:枚举区间分割点,根据分割点的情况讨论左右区间计算结果,方案数增量为左右方案数相乘。

  • 分割点为 ‘&’:
    结果为0 有三种情况: 0 0, 0 1, 1 0
    dp[i][j][0] += dp[i][k - 1][0] * dp[k + 1][j][0] + dp[i][k - 1][0] * dp[k + 1][j][1] + dp[i][k - 1][1] * dp[k + 1][j][0];
    结果为1 有一种情况: 1 1
    dp[i][j][1] += dp[i][k - 1][1] * dp[k + 1][j][1];
  • 分割点为 ‘|’:
    结果为0 有一种情况: 0 0
    dp[i][j][0] += dp[i][k - 1][0] * dp[k + 1][j][0];
    结果为1 有三种情况: 0 1, 1 0, 1 1
    dp[i][j][1] += dp[i][k - 1][0] * dp[k + 1][j][1] + dp[i][k - 1][1] * dp[k + 1][j][0] + dp[i][k - 1][1] * dp[k + 1][j][1];
  • 分割点为 ‘^’:
    结果为0 有两种情况: 0 0, 1 1
    dp[i][j][0] += dp[i][k - 1][0] * dp[k + 1][j][0] + dp[i][k - 1][1] * dp[k + 1][j][1];
    结果为1 有两种情况: 0 1, 1 0
    dp[i][j][1] += dp[i][k - 1][1] * dp[k + 1][j][0] + dp[i][k - 1][0] * dp[k + 1][j][1];

初始化:数字位初始化为1,即dp[i][i][0/1] = 1;


作者:whbsurpass
链接:https://leetcode.cn/problems/boolean-evaluation-lcci/solution/qu-jian-dpfen-zhi-suan-fa-by-whbsurpass-bsry/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

public int countEval(String s, int result) {
        if (s.length() == 0) return 0;
        if (s.length() == 1) return (s.charAt(0) - '0' == result) ? 1 : 0;
        char[] ch = s.toCharArray();

        //dp[i][j][result=0/1]表示第i到j个数字计算结果为result的方案数
        int[][][] dp = new int[ch.length][ch.length][2];

        //初始化
        for (int i = 0; i < ch.length; i++) {
            if (ch[i] == '0' || ch[i] == '1') {
                dp[i][i][ch[i] - '0'] = 1;
            }
        }

        //枚举区间长度len,跳步为2,一个数字一个符号
        for (int len = 2; len <= ch.length; len = len + 2) {
            //枚举区间起点,数字位,跳步为2
            for (int i = 0; i <= ch.length - len; i = i + 2) {
                int j = i + len;//区间终点,数字位
                //枚举分割点,三种 '&','|', '^',跳步为2
                for (int k = i + 1; k <= j - 1; k = k + 2) {
                    if (ch[k] == '&') {
                        //结果为0 有三种情况: 0 0, 0 1, 1 0
                        //结果为1 有一种情况: 1 1
                        dp[i][j][0] += dp[i][k - 1][0] * dp[k + 1][j][0] + dp[i][k - 1][1] * dp[k + 1][j][0] + dp[i][k - 1][0] * dp[k + 1][j][1];
                        dp[i][j][1] += dp[i][k - 1][1] * dp[k + 1][j][1];
                    }
                    if (ch[k] == '|') {
                        //结果为0 有一种情况: 0 0
                        //结果为1 有三种情况: 0 1, 1 0, 1 1
                        dp[i][j][0] += dp[i][k - 1][0] * dp[k + 1][j][0];
                        dp[i][j][1] += dp[i][k - 1][1] * dp[k + 1][j][1] + dp[i][k - 1][1] * dp[k + 1][j][0] + dp[i][k - 1][0] * dp[k + 1][j][1];
                    }
                    if (ch[k] == '^') {
                        //结果为0 有两种情况: 0 0, 1 1
                        //结果为1 有两种情况: 0 1, 1 0
                        dp[i][j][0] += dp[i][k - 1][1] * dp[k + 1][j][1] + dp[i][k - 1][0] * dp[k + 1][j][0];
                        dp[i][j][1] += dp[i][k - 1][1] * dp[k + 1][j][0] + dp[i][k - 1][0] * dp[k + 1][j][1];
                    }
                }
            }
        }
        return dp[0][ch.length - 1][result];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值