近期发布的 OceanBase 4.3.3 GA 版本中,我们在关系型数据库的基础上,新增了向量检索能力,支持向量数据类型、向量索引以及基于向量索引的搜索功能。用户可以通过 SQL 和 Python SDK 两种方式,灵活地使用 OceanBase 的向量检索能力。结合 OceanBase 在海量数据分布式存储方面的优势,以及对多模数据类型和多种索引方式的支持,这一能力为用户带来更强大的数据融合查询体验,可以显著简化 AI 应用技术栈,加速 RAG、智能推荐、多模态搜索等场景的落地。
本文将与大家介绍典型的 RAG(Retrieval-Augmented Generation,检索增强生成)场景,探讨如何基于 OceanBase 一体化的向量能力,更加敏捷地搭建可扩展且易用的 RAG 智能问答机器人,并分析如何通过OceanBase简化技术栈。
1、构建AI应用面临的挑战
随着人工智能技术的不断发展,众多企业正积极探寻将AI融入自身业务与服务之道,优化用户体验并提升运营效率。这一进程中,AI应用的构建给数据基础设施带来了前所未有的挑战。AI应用往往涵盖对多样化数据类型(结构化、非结构化及半结构化数据)的存储、处理与检索,并需要更高效