matlab缺失值处理 插值并自动填充

本文介绍了如何在IT数据处理中,通过线性插值方法处理数值数据集中的NaN值,实现数据自动填充,确保数据完整性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

只需更改num、raw_data和processed_data。 

for m = 1:num                  %num为行数
    y = raw_data(m,:)'; 
    x = 1:size(y);  
    data = [x',y];             %data维度(3000,2)
    % isnan(y)                 %判断是否为NaN,是则为1
    %以下为核心部分
    d=[];
    d_b =[];
    for i = 1:size(y)
        if isnan(data(i,2))       %是NaN返回1
            d = [d,data(i,1)] ;    %d为空值存在的索引
        else
            d_b = [d_b,data(i,1)] ; %d为非空值存在的索引
        end
    end
    train_x =x(d_b);       %train_x为x对应的所有非空数据
    train_y = y(d_b);	   %train_y为y对应的所有非空数据
    cha = x(d);		       %cha为待插值序号(可看作NaN的索引位置)
    pre =interp1(train_x,train_y,cha,'linear');

    %%数据自动插入
    %本质上就是NaN值用插值覆盖掉,然后将填充完的数据data保存
    %承接上面核心部分
    account =1;
    for i = 1:size(y)
        if isnan(data(i,2))                   %是NaN返回1
            data(i,2)=pre(account);           %d为空值存在的索引;
            account =account+1;
        else
            d_b = [d_b,data(i,1)];            %d为非空值存在的索引;
        end
    end

    processed_data(m,:) = data(:,2);
end
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值