【LeetCode热题100】4. 寻找两个正序数组的中位数(二分)

一.题目要求

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。

二.题目难度

困难

三.输入样例

示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

提示:

  • nums1.length == m
  • nums2.length == n
  • 0 <= m <= 1000
  • 0 <= n <= 1000
  • 1 <= m + n <= 2000
  • -106 <= nums1[i], nums2[i] <= 106

四.解题思路

将其转为找两个有序数组的第K小元素(二分思想简单,边界优雅,击败99.93%,)

五.代码实现

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {

        int n = nums1.size() + nums2.size();
        if (n & 1)
            return findNumK(nums1, nums2, (n / 2) + 1);
        else
            return (findNumK(nums1, nums2, n / 2) +
                    findNumK(nums1, nums2, (n / 2) + 1)) /
                   2.0;
    }

    int findNumK(vector<int>& nums1, vector<int>& nums2, int k) {
        int left = max(0, (int)(k - nums2.size()));
        int right = min(k, (int)(nums1.size()));

        while (left < right) {
            int mid = (left + right) / 2;
            if (nums2[k - mid - 1] > nums1[mid]) {
                left = mid + 1;
            } else
                right = mid;
        }

        int nums1LeftMax = left == 0 ? INT_MIN : nums1[left - 1];
        int nums2LeftMax = left == k ? INT_MIN : nums2[k - left - 1];
        return max(nums1LeftMax, nums2LeftMax);
    }
};

六.题目总结

暂时还没消化,想透了补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值