一.题目要求
给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
二.题目难度
困难
三.输入样例
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:
- nums1.length == m
- nums2.length == n
- 0 <= m <= 1000
- 0 <= n <= 1000
- 1 <= m + n <= 2000
- -106 <= nums1[i], nums2[i] <= 106
四.解题思路
将其转为找两个有序数组的第K小元素(二分思想简单,边界优雅,击败99.93%,)
五.代码实现
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int n = nums1.size() + nums2.size();
if (n & 1)
return findNumK(nums1, nums2, (n / 2) + 1);
else
return (findNumK(nums1, nums2, n / 2) +
findNumK(nums1, nums2, (n / 2) + 1)) /
2.0;
}
int findNumK(vector<int>& nums1, vector<int>& nums2, int k) {
int left = max(0, (int)(k - nums2.size()));
int right = min(k, (int)(nums1.size()));
while (left < right) {
int mid = (left + right) / 2;
if (nums2[k - mid - 1] > nums1[mid]) {
left = mid + 1;
} else
right = mid;
}
int nums1LeftMax = left == 0 ? INT_MIN : nums1[left - 1];
int nums2LeftMax = left == k ? INT_MIN : nums2[k - left - 1];
return max(nums1LeftMax, nums2LeftMax);
}
};
六.题目总结
暂时还没消化,想透了补充。