数据结构 线性表1

线性表的定义

线性表:零个或多个数据元素的有限序列。

元素之间有顺序,第一个元素无前驱,最后一个元素无后继。

线性表的元素的个数定义为线性表的长度,当个数为零时,称为空表。

ai是第i个元素,称i为数据元素ai在线性表中的位序。

在较复杂的线性表中,一个数据元素可以由若干个数据项组成。

线性表的抽象数据类型

/* 初始化顺序线性表 */
Status InitList(SqList *L) 
{ 
    L->length=0;
    return OK;
}

/* 初始条件:顺序线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE */
Status ListEmpty(SqList L)
{ 
	if(L.length==0)
		return TRUE;
	else
		return FALSE;
}

/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(SqList *L)
{ 
    L->length=0;
    return OK;
}

/* 初始条件:顺序线性表L已存在。操作结果:返回L中数据元素个数 */
int ListLength(SqList L)
{
	return L.length;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:用e返回L中第i个数据元素的值,注意i是指位置,第1个位置的数组是从0开始 */
Status GetElem(SqList L,int i,ElemType *e)
{
    if(L.length==0 || i<1 || i>L.length)
            return ERROR;
    *e=L.data[i-1];

    return OK;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:返回L中第1个与e满足关系的数据元素的位序。 */
/* 若这样的数据元素不存在,则返回值为0 */
int LocateElem(SqList L,ElemType e)
{
    int i;
    if (L.length==0)
            return 0;
    for(i=0;i<L.length;i++)
    {
            if (L.data[i]==e)
                    break;
    }
    if(i>=L.length)
            return 0;

    return i+1;
}


/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L), */
/* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */
Status ListInsert(SqList *L,int i,ElemType e)
{ 
	int k;
	if (L->length==MAXSIZE)  /* 顺序线性表已经满 */
		return ERROR;
	if (i<1 || i>L->length+1)/* 当i比第一位置小或者比最后一位置后一位置还要大时 */
		return ERROR;

	if (i<=L->length)        /* 若插入数据位置不在表尾 */
	{
		for(k=L->length-1;k>=i-1;k--)  /* 将要插入位置之后的数据元素向后移动一位 */
			L->data[k+1]=L->data[k];
	}
	L->data[i-1]=e;          /* 将新元素插入 */
	L->length++;

	return OK;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1 */
Status ListDelete(SqList *L,int i,ElemType *e) 
{ 
    int k;
    if (L->length==0)               /* 线性表为空 */
		return ERROR;
    if (i<1 || i>L->length)         /* 删除位置不正确 */
        return ERROR;
    *e=L->data[i-1];
    if (i<L->length)                /* 如果删除不是最后位置 */
    {
        for(k=i;k<L->length;k++)/* 将删除位置后继元素前移 */
			L->data[k-1]=L->data[k];
    }
    L->length--;
    return OK;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status ListTraverse(SqList L)
{
	int i;
    for(i=0;i<L.length;i++)
            visit(L.data[i]);
    printf("\n");
    return OK;
}

合并线性表Lb和线性表La 

/*将所有的在线性表Lb中但不在La中的数据元素插入到La中*/
void unionL(SqList *La,SqList Lb)
{
	int La_len,Lb_len,i;
	ElemType e;                        /*声明与La和Lb相同的数据元素e*/
	La_len=ListLength(*La);            /*求线性表的长度 */
	Lb_len=ListLength(Lb);
	for (i=1;i<=Lb_len;i++)
	{
		GetElem(Lb,i,&e);              /*取Lb中第i个数据元素赋给e*/
		if (!LocateElem(*La,e))        /*La中不存在和e相同数据元素*/
			ListInsert(La,++La_len,e); /*插入*/
	}
}

当你传递一个参数给函数的时候,这个参数会不会在函数内被改动决定了使用什么参数形式。

如果需要被改动,则需要传递指向这个参数的指针。

如果不用被改动,可以直接传递这个参数。

线性表的顺序存储结构

顺序存储定义

线性表的顺序存储结构,指的是用一段地址连续的存储单元依次存储线性表的数据元素。

数据长度与线性表长度的区别

数组长度:存放线性表的存储空间的长度,存储分配后这个量一般是不变的。

线性表的长度:线性表中数据元素的个数,随着线性表插入和删除操作的进行,这个量是在变化的。

地址计算方法

存储器中的每个存储单元都有自己的编号,这个编号称为地址。

设占用C个存储单元,那么线性表中的第i+1个数据元素的存储位置和第i个数据元素的存储位置满足下列关系。

LOC(i+1)=LOC(i)+ C

对每个线性表位置的存入或者取出数据,对于计算机来说时间相等,存取时间性能为O(1),通常将其称为随机存取结构。

顺序存储结构的插入与删除

获得元素操作

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:用e返回L中第i个数据元素的值,注意i是指位置,第1个位置的数组是从0开始 */
Status GetElem(SqList L,int i,ElemType *e)
{
    if(L.length==0 || i<1 || i>L.length)
            return ERROR;
    *e=L.data[i-1];

    return OK;
}

注:此处是把指针*e的值给修改成L->data[i-1],这就是真正要返回的数据。

插入操作

需要将i后所有元素向后移动一个位置,表长加一。

Status ListInsert(SqList *L,int i,ElemType e)
{ 
	int k;
	if (L->length==MAXSIZE)  /* 顺序线性表已经满 */
		return ERROR;
	if (i<1 || i>L->length+1)/* 当i比第一位置小或者比最后一位置后一位置还要大时 */
		return ERROR;

	if (i<=L->length)        /* 若插入数据位置不在表尾 */
	{
		for(k=L->length-1;k>=i-1;k--)  /* 将要插入位置之后的数据元素向后移动一位 */
			L->data[k+1]=L->data[k];
	}
	L->data[i-1]=e;          /* 将新元素插入 */
	L->length++;

	return OK;
}

删除操作

需要将i后所有元素向前移动一个位置,表长减一。

Status ListDelete(SqList *L,int i,ElemType *e) 
{ 
    int k;
    if (L->length==0)               /* 线性表为空 */
		return ERROR;
    if (i<1 || i>L->length)         /* 删除位置不正确 */
        return ERROR;
    *e=L->data[i-1];
    if (i<L->length)                /* 如果删除不是最后位置 */
    {
        for(k=i;k<L->length;k++)/* 将删除位置后继元素前移 */
			L->data[k-1]=L->data[k];
    }
    L->length--;
    return OK;
}

插入和删除的时间复杂度为O(n)

线性表顺序存储结构的优缺点

优点:

1.无须为表示表中元素之间的逻辑关系而增加额外的存储空间。

2.可以快速地存取表中任意位置的元素

缺点:

1.插入和删除操作需要移动大量元素

2.当线性表长度变化较大时,难以确定存储空间的容量

3.造成存储空间的“碎片”

线性表的链式存储结构

线性表链式存储结构定义

在链式结构中,每个数据元素不仅要存储数据元素信息,还要存储他的后继元素的存储地址。

我们把存储数据元素信息的域称为数据域,把存储直接后继位置的域称为指针域。指针域中存储的地信息称作指针或链。两部分合起来称为结点。

n个结点链结成一个链表,即为线性表的链式存储结构。

我们把链表中的第一个结点的存储位置叫做头指针,链表的最后一个结点指针为“空”(用NULL或者^符号表示)

有时为了更加方便地对链表进行操作,会在单链表的第一个结点前附设一个结点,称为头结点。

头指针与头结点的异同

头指针:

1.头指针是指链表指向第一个结点的指针,若链表有头结点,则是指向头结点的指针。

2.头指针具有标志作用,所以常用头指针冠以链表的名字

3.无论链表是否为空,头指针均不为空。头指针是链表的必要元素

头结点:

1.头结点是为了操作的统一和方便而设立的,放在第一元素的节点之前,其数据域一般无意义(也可存放链表长度)

2.有了头结点,对在第一元素结点前插入结点和删除第一结点,其操作与其他结点的操作就统一了。

3.头结点不一定是链表必须的。

线性表链式存储结构代码描述

typedef struct Node
{
    ElemType data;
    struct Node *next;
}Node;
typedef struct Node *LinkList; /* 定义LinkList */

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值