整理Rich feature hierarchies for accurate object detection and semantic segmentation中的要点

这篇文章是使用CNN做object detection的第一篇论文,提出的方法叫做Region-based CNN,简称R-CNN。这个R-CNN的思路就是我的毕业论文中最为关键的一环,同时很多新的重要的深度学习物体检测方法都是基于这个思路提出的,所以这篇论文的整理也显得尤为重要,但是同时刚开始接...

2017-02-27 15:21:40

阅读数 257

评论数 0

整理ImageNet Classification with Deep Convolutional Neural Networks中的要点

粗略整理: 1.训练时间非常长 2.ReLUs能够数倍提高训练的速度,并且容易避免梯度爆炸(但是存在ReLU变为0的“死亡”现象),并且梯度计算也更加简单(只有0,1),使得训练深度更加深的网络成为可能(或者同等深度时加速训练)。 3.Local Response Normalization...

2017-02-20 23:15:47

阅读数 1395

评论数 0

整理A Fast and Accurate Unconstrained Face Detector中的要点

摘要 主要介绍了该文章的贡献——即致力于识别Unconstrained的脸。首先要加入一个新的特征—”Normalized Pixel Difference(NPD)”,解释没看懂。第二,要用一个深度二叉树来学习最优NPD特征的子集和这些NPD子集的结合(combinations),并且声明了这...

2017-02-15 15:59:46

阅读数 1314

评论数 2

整理Robust Object Detection Via Soft Cascade论文中的要点

这篇论文首先根据人脸识别传统方法的经典文章[1]总结了传统瀑布式结构的优缺点,如下:传统cascade方法的优点: 运用瀑布结构大幅加快了检测速度传统cascade方法的缺点: 1.该识别器后面的层数不能很好的利用前面层数的结果信息。尽管在前一层可能高分通过,但仅仅因为一层表现不好就被拒绝...

2017-02-11 21:47:28

阅读数 764

评论数 0

整理Rapid object detection using a boosted cascade of simple features论文中的要点

整理Rapid object detection using a boosted cascade of simple features论

2017-02-08 17:51:16

阅读数 1729

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭