hdu 5303

Delicious Apples


Problem Description
There are  n  apple trees planted along a cyclic road, which is  L  metres long. Your storehouse is built at position  0  on that cyclic road.
The  i th tree is planted at position  xi , clockwise from position  0 . There are  ai  delicious apple(s) on the  i th tree.

You only have a basket which can contain at most  K  apple(s). You are to start from your storehouse, pick all the apples and carry them back to your storehouse using your basket. What is your minimum distance travelled?

1n,k105,ai1,a1+a2+...+an105
1L109
0x[i]L

There are less than 20 huge testcases, and less than 500 small testcases.
 

Input
First line:  t , the number of testcases.
Then  t  testcases follow. In each testcase:
First line contains three integers,  L,n,K .
Next  n  lines, each line contains  xi,ai .
 

Output
Output total distance in a line for each testcase.
 

Sample Input
  
  
2 10 3 2 2 2 8 2 5 1 10 4 1 2 2 8 2 5 1 0 10000
 

Sample Output
  
  
18 26
 

 题目大意:给定一个环形道路长度为L,以及环形道路下标为0处为起始点,在环形道路上距
      离起始点Xi位置种植一颗苹果树,该树有a个苹果,篮子的最大容量为K,那么求摘
      完全部苹果所需的最短距离。

思路:最后一篮想了多种可能性,结果太乱不知道怎么解决了。。。
   将环形圈分成两个半圆,在每个半圆里尽可能的装苹果,但是,最后一篮苹果可能是绕了整个
   环形圈走的,所以这里需要特殊处理一下。
   刚开始的思路就卡在最后一篮苹果上了,看了别人的代码,如果自己写可能会写的很复杂,
   把每个苹果都纳入数组,求出从两个方向到达原点最近的距离,然后在最后一个篮子上进行枚举。
   很精妙的思路和代码。
 
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define M 100005
int Left[M],Right[M],numl,numr;
int n,k,l;
long long s_l[M],s_r[M],ans;
void slove()
{
    for(int i=1;i<=numl;i++){
        if(i<=k)
            s_l[i]=Left[i];
        else
            s_l[i]=Left[i]+s_l[i-k];
    }
    for(int i=1;i<=numr;i++){
        if(i<=k)
            s_r[i]=Right[i];
        else
            s_r[i]=Right[i]+s_r[i-k];
    }
    ans=(s_r[numr]+s_l[numl])*2;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d%d",&l,&n,&k);
        memset(s_l,0,sizeof(s_l));
        memset(s_r,0,sizeof(s_r));
        numl=numr=0;
        for(int i=1;i<=n;i++){
            int len,num;
            scanf("%d%d",&len,&num);
            for(int j=1;j<=num;j++){
                if(len*2<l)
                    Left[++numl]=len;
                else
                    Right[++numr]=l-len;
            }
        }
        sort(Left+1,Left+1+numl);
        sort(Right+1,Right+1+numr);
        slove();

        for(int i=0;i<=k;i++){
            long long ll = 2*(s_l[numl-i]+s_r[max(0,numr-k+i)]);
            ans=min(ans,ll+l);
        }
        printf("%lld\n",ans);
    }
    return 0;
}

    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值