bzoj 1101: [POI2007]Zap(莫比乌斯反演)

本文探讨了在密码破解场景下,如何通过数学方法解决特定的整数对计数问题。针对给定的整数a、b和d,文章详细阐述了如何计算满足条件gcd(x,y)=d的正整数对(x,y)的数量,其中x≤a,y≤b。通过引入莫比乌斯函数和分块技巧,提出了一种高效算法,将问题转化为求解莫比乌斯函数的累加值,从而大大降低了计算复杂度。
摘要由CSDN通过智能技术生成

传送门

Description

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2

//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。

这个题就是求 ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) = k ] ( n < m ) \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k] (n<m) i=1nj=1m[gcd(i,j)=k](n<m)

而对于gcd有 ∑ d ∣ g c d ( i , j ) μ ( d ) = [ g c d ( i , j ) = 1 ] \sum_{d|gcd(i,j)} \mu(d)=[gcd(i,j)=1] dgcd(i,j)μ(d)=[gcd(i,j)=1],因为gcd不为1的时候求和为0,具体证明就不给出了

所以对于gcd(i,j)=k只需要把k提取出去。
∑ i = 1 n ∑ j = 1 m g c d ( i , j ) = k   ∑ i = 1 n / k ∑ j = 1 m / k g c d ( i , j ) = 1 \sum_{i=1}^{n}\sum_{j=1}^{m}gcd(i,j)=k\\ ~\\ \sum_{i=1}^{n/k}\sum_{j=1}^{m/k}gcd(i,j)=1 i=1nj=1mgcd(i,j)=k i=1n/kj=1m/kgcd(i,j)=1
然后就可以将gcd换了
∑ i = 1 n / k ∑ j = 1 m / k ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{i=1}^{n/k}\sum_{j=1}^{m/k}\sum_{d|gcd(i,j)} \mu(d) i=1n/kj=1m/kdgcd(i,j)μ(d)
然后我们可以枚举d,假设n小于m,又因为i,j都是d的倍数,所以有
∑ d = 1 n / k μ ( d ) ∑ i = 1 n k d ∑ j = 1 m k d \sum_{d=1}^{n/k} \mu(d)\sum_{i=1}^\frac{n}{kd}\sum_{j=1}^\frac{m}{kd} d=1n/kμ(d)i=1kdnj=1kdm
然后对这个式子化简就有
∑ d = 1 n / k μ ( d ) ∗ ⌊ n k d ⌋ ∗ ⌊ m k d ⌋ \sum_{d=1}^{n/k}\mu(d)*\lfloor \frac{n}{kd}\rfloor *\lfloor \frac{m}{kd}\rfloor d=1n/kμ(d)kdnkdm
化简到这一步之后我们可以通过分块,即将式子中相同的部分直接计算出结果,这样复杂度就可降到 O n O\sqrt{n} On

AC代码如下:
#include<bits/stdc++.h>
using namespace std;
const int maxn=50000;
int miu[maxn+10];
int vis[maxn+10];
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
void mobius()
{
    for(int i=1;i<=maxn;++i)
        miu[i]=1;
    for(int i=2;i<=maxn;++i)
    {
        if(!vis[i])
        {
            miu[i]=-1;
            for(int j=i+i;j<=maxn;j+=i)
            {
                vis[j]=1;
                if((j/i)%i==0) miu[j]=0;
                else miu[j]*=-1;
            }
        }
    }
    for(int i=1;i<=maxn;i++)  miu[i]+=miu[i-1];
}
int main()
{
//	ios::sync_with_stdio(false);cin.tie(nullptr),cout.tie(nullptr);
	int t,a,b,d,m;
	mobius();
	t=read();
	while(t--){
		int ans=0;
		a=read(),b=read(),d=read();
		a/=d,b/=d;
		int n=min(a,b),r=0;
		for(int i=1;i<=n;i=r+1){
			r=min(a/(a/i),b/(b/i));
			ans+=(miu[r]-miu[i-1])*(a/i)*(b/i);
		}
		printf("%d\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值