acwing 91. 最短Hamilton路径(状压dp)

传送门

描述

给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行输入整数n。

接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。

对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

输出一个整数,表示最短Hamilton路径的长度。

数据范围

1≤n≤20
0≤a[i,j]≤107

输入样例:

5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0

输出样例:

18
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int dp[1<<20+1][21],w[21][21];
int main()
{
	int n;
	memset(dp,0x3f3f3f3f,sizeof dp);
	cin>>n;
	for(int i=0;i<n;i++)
		for(int j=0;j<n;j++)
			cin>>w[i][j];
	dp[1][0]=0;
	for(int i=1;i<(1<<n);i++)
		for(int j=0;j<n;j++)
			if((i>>j)&1)
				for(int k=0;k<n;k++)	dp[i][j]=min(dp[i][j],dp[i^(1<<j)][k]+w[k][j]);
	cout<<dp[(1<<n)-1][n-1]<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值