实验1 模乘法逆元算法的实现(扩展的欧几里得算法Java版)

本实验的准备知识包括最大公约数、模运算及其基本性质、互素等概念。
最大公约数: a和b的最大公约数是能够同时整除a和b的最大正整数,记为:gcd(a,b)或(a,b)。
互素的(既约的):满足gcd(a,b)=1的a和b。
同余(模运算):设整数a,b,n(n≠0),如果a-b是n的整数倍(正的或负的),我们就说a≡b(mod n),读作:a同余于b模n。
欧几里得算法:又称辗转相除法,基于定理gcd(a,b)=gcd(b,a mod b) (a>b)

在这里插入图片描述

public int euclid(int a,int b){
    int first,second;
    first = a;
    second = b;
    int temp;
    if(first<second){
        temp = first;
        first = second;
        second = temp;
    }
    while(first%second!=0){
        temp = first%second;
        first = second;
        second = temp;
    }
    return second;
}

扩展的欧几里得算法
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
乘法逆元素:假设gcd(a,n)=1,则存在整数s,t,使得 as+nt=1(由扩展的欧几里得算法可知),则as≡1(mod n),因此s是a(mod n)的乘法逆元素。且有:a-1≡s(mod n)。

public int euclid_2(int a,int b)
{
    int first = a;
    int second = b;
    if(second == 0)
    {
        x=1;
        y=0;
        return first;
    }
    int r=euclid_2(second,first%second);
    int t=y;
    y=x-(first/second)*y;
    x=t;
    return x;   //结束循环
}

说明:输入a,b两个数,使用递归的策略,将second和first与second的余数再传给下一次的欧几里得扩展算法,设 ax1+by1=gcd(a,b);
  bx2+(a mod b)y2=gcd(b,a mod b);
  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
  则:ax1+by1=bx2+(a mod b)y2;
  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;(这就是算法中x,y的作用)
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
用x来记录最终的结果逆元。最后返回x。求出的逆元可能为负,所以输出的结果应该为(x+b)%b的值。
完整代码:
Arithmetic.Java

public class Arithmetic {
    int x = 0;
    int y = 0;

    public int euclid(int a,int b){
        int first,second;
        first = a;
        second = b;
        int temp;
        if(first<second){
            temp = first;
            first = second;
            second = temp;
        }
        while(first%second!=0){
            temp = first%second;
            first = second;
            second = temp;
        }
        return second;
    }

    public int euclid_2(int a,int b)
    {
        int first = a;
        int second = b;
        if(second == 0)
        {
            x=1;
            y=0;
            return first;
        }
        int r=euclid_2(second,first%second);
        int t=y;
        y=x-(first/second)*y;
        x=t;
        return x;   //结束循环
    }
}

Test.java

import java.util.Scanner;

public class Test {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Arithmetic arithmetic = new Arithmetic();
        Scanner in = new Scanner(System.in);
        System.out.println("请输入欧几里得算法求最大公因数的两个数(中间用空格隔开):");
        int first = in.nextInt();
        int second = in.nextInt();
        System.out.println("gcd("+first+","+second+")="+arithmetic.euclid(first,second));
        System.out.println("请输入欧几里得扩展算法求逆元的两个数(中间用空格隔开):");
        int third = in.nextInt();
        int fourth = in.nextInt();
        int result = arithmetic.euclid_2(third,fourth);
        if(result<0) {
            result = result+ fourth;
        }
        System.out.println(third+"(mod"+fourth+")="+result);
    }
}

实验结果截图
在这里插入图片描述本次实验主要是为了掌握最大公因子算法的实现、同余类中元素的乘法逆元的求解。

  • 7
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值