逆向工程实验_lab0(密码学算法逆向)

一级目录

1. cipher text

bmjs dtz uqfd ymj lfrj tk ymwtsjx dtz bns tw dtz inj ymjwj nx st rniiqj lwtzsi

刚看到需要解密的文本,就觉得它很像移位密码,于是开始试了一下。
源代码:
求最大公因数:Arithmetic.java

public class Arithmetic {
    int x = 0;
    int y = 0;

    public int euclid(int a,int b){
        int first,second;
        first = a;
        second = b;
        int temp;
        if(first<second){
            temp = first;
            first = second;
            second = temp;
        }
        while(first%second!=0){
            temp = first%second;
            first = second;
            second = temp;
        }
        return second;
    }
}

移位密码的解密:Affine.java

class Affine {
        String deciphering(String s, int a, int b){// 解密的实现
            char[] ch = s.toCharArray();
            int length = ch.length;// 密文长度
            int[] in = new int[length];
            for (int i = 0; i < ch.length; i++) {
                if(ch[i] == ' '){  //如果是空格就不用解密,直接跳过
                }
                else {
                    in[i] = ch[i] - 97;// 利用ascii变成0-25数字
                    in[i] = ((in[i] - b) * a) % 26;  // 解密
                    if (in[i] < 0) {
                        in[i] += 26;
                    }
                    ch[i] = (char) (in[i] + 97);// 将数字变成字母
                }
            }
            return String.valueOf(ch);// 将字符串数字变成String类型的字符串,返回
        }
}
主类:Test.java
public class Test {
    public static void main(String[] args) {
        Arithmetic arithmetic = new Arithmetic();
        final int MOD = 26;
        int [] gcd = new int[12];
        int m = 0;
        String out = null;
        for(int i=1;i<MOD;i++){
            if((arithmetic.euclid(i,MOD)) == 1) {   //求与26互素的数
                gcd[m] = (arithmetic.euclid_2(i,MOD)+26)%26; //求这些数mod26的逆,并把它加入gcd数组
                m++;
            }
        }
        Scanner input = new Scanner(System.in);
        System.out.println("请输入需要解密的密文:");
        String s = input.nextLine();// 输入密文
        Affine affine = new Affine();
        int k =1;
        for(int i=0;i<12;i++) {
            for (int j = 0; j < 26; j++) {
                out = affine.deciphering(s, gcd[i], j);
                System.out.println("第"+k+"条明文为:"+out);
                k++;
            }
        }
    }
}

实验结果截图:
在这里插入图片描述

最后成功破解了由仿射密码加密的密文,得到了明文when you play the game of thrones you win or you die there is no middle ground。

2. cipher text

“ryf utxy?” “ryf utxy,” orqf jhqihu. “nx nqww urwz! ax bhgo roogix,
trouqyvo - utxix qo yhutqyv oh fryvxihgo chi rylhyx nth tro ohdxutqyv
uh tqfx ro ehybxioruqhy! ojxxet, oh r nqox hwf cixyetdry orqf uh dx
hyex, qo ry qybxyuqhy hc dry’o uh jixbxyu tqd cihd utqyzqyv. qu qo
rwoh ry qycrwwqswx dxryo hc fqoehbxiqyv utru ntqet tx nqotxo uh tqfx.
r tgdry sxqyv, trouqyvo, eryyhu ixoqou utx hjjhiugyqul uh ixbxrw
tqdoxwc ryf xpjixoo tqo jxiohyrwqul ntqet ehybxioruqhy vqbxo tqd.
xbxil uqdx tx nqww vqbx tqdoxwc rnrl.” “ntru fh lhg xpjxeu egou uh
uxww lhg?” txiegwx jhqihu odqwxf. “r wqx,” tx orqf. “ryf sl qu, q
otrww zyhn utx uigut!”

  赫伯特·S·基姆在他那部经典的密码学入门著作 《密码和隐密写作》(Codes and Secret Writing)里提道:英文的字母频率排列顺序: ETAONR ISHDLF CMUGYP WBVKJX QZ,最常见的字母对是TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI HI AS TO,最常见的连写字母对是LL EE SS OO TT FF RR NN PP CC。
  使用最多的前12个字母占了总使用次数的80%,使用最多的前8个字母则占了总使用次数的65%。数种排名函数能很好地拟合字母频率,而双参数Cocho/Beta排名函数(two-parameter Cocho/Beta rank function)是当中的佼佼者。用另一种不能调节参数的排名函数也能不错地拟合字母频率分布,该函数也能拟合蛋白质序列中的氨基酸频率。
在这里插入图片描述

英语中字母出现的频率

字母频率
a8.167%
b1.492%
c2.782%
d4.253%
e12.702%
f2.228%
g2.015%
h6.094%
i6.966%
j0.153%
k0.772%
l4.025%
m2.406%
n6.749%
o7.507%
p1.929%
q0.095%
r5.987%
s6.327%
t9.056%
u2.758%
v0.978%
w2.360%
x0.150%
y1.974%
z0.074%

首字母频率,单词中首字母的频率如下:

首字母频率
a11.602%
b4.702%
c3.511%
d2.670%
e2.007%
f3.779%
g1.950%
h7.232%
i6.286%
j0.590%
k0.597%
l2.705%
m4.374%
n2.365%
o6.264%
p2.545%
q0.173%
r1.653%
s16.671%
t7.755%
u1.487%
v0.649%
w6.753%
x0.034%
y1.620%
z0.037%

解密方法:先用频率分析得到原始的字符对应表,发现仍旧是乱序,再根据部分单词、句子的特性猜测其原始内容,调整字符对应表,多次执行此操作,逐渐得到更多的字符对应关系:
源代码:

#include<bits/stdc++.h>
using namespace std;
struct node {
    char c;
    double val;
}p[100];
int cmp(node a,node b)
{
    return a.val<b.val;
}
char m[1000];     //按照空格读取的字符数组,即每一个单词为一个单元
int n[50];        //每个单元存取某个字符出现的次数
int main()
{
    int sum=0,len,i;
    //double sum=0;
    freopen("2.txt","r",stdin);//读取文件
    //freopen("su.txt","w",stdout);可以创建一个文件,将结果写入
    memset(n,0,sizeof(n));
    while(scanf("%s",m)!=EOF)
       // printf("%s\n",m);
    {
        len=strlen(m);
        for(i=0;i<len;i++){
            if(m[i]>='a'&&m[i]<='z')
            {
                n[m[i]-'a']++;
                sum+=1;
            }
            if(m[i]>='A'&&m[i]<='Z'){
                n[m[i]-'A']++;
                sum+=1;
            }
        }
    }

  for(i=0;i<26;i++){
    printf("%c:%d    %f\n",'a'+i,n[i],1.0*n[i]/sum);
  }
  for (i=0;i<=25;i++) {
        p[i].c=i; p[i].val=1.0*n[i]/sum;
  }
  sort(p,p+26,cmp);
  for (i=25;i>=0;i--) {
    printf("%c ",p[i].c+'a');
  }
  /*for (i=0;i<26;i++) {
    p2[i].c=i;
  }
  ///
  memset(f,-1,sizeof(f));
  sort(p2,p2+26,cmp);
  for (i=0;i<26;i++) {
    f[p[i].c-'a']=p2[i].val-'a';
  }
  freopen("1.txt","r",stdin);
    while (scanf("%s",s)!=EOF) {
        len=strlen();

    }*/
     return 0;
}

实验截图:
在这里插入图片描述

最后解密的文本为:
“and then?”
“and then,” said poirot. “we will talk! ae vous assure, hastings - there is nothing so dangerous for anyone who has something to hide as conversation! speech, so a wise old frenchman said to me once, is an invention of man’s to prevent him from thinking. it is also an infallible means of discovering that which he wishes to hide. a human being, hastings, cannot resist the opportunity to reveal himself and express his personality which conversation gives him. every time he will give himself away.”
“what do you expect cust to tell you?”
hercule poirot smiled.
“a lie,” he said. “and by it, i shall know the truth!”

3. Vigenere cipher text

ivikdkdqmjglpwlzgmpfbjiidbbysljdxfgbiwwehapheysgnccyootstzabcobvrtazeywvwwazaidgazpethpvbpwobvjxgfmdobcgpfkxkszzaigcjrpetacjhuthpvhkjhpzhfpmevzeqsbyomhsdvftasfgztcobzcghfmdobcwvnvbrvkrgxdbmkfbtgbvgmptbvfmtgblbmxzweshgcbyskdtbysfwoarqhcjqeqbcuidcnchwwgnedwihptkqczgdkigdenhpzgigwvtwiasbfhatqijsbcdwzbmpgqkkthtqigmefmjsgislkcfthpvfxlszvhagsmgclhwjcsxmdtrbtiwweghuhpvgxrzcjwhcczzbvpfkvftiwwecyivqjuxchtvatcwvrbhjhpfiltcnywluobyskhaiegbdbbysktkijhatsfgztcobzcgivikvxloazbaxrqeuydfitfbbswihaphpvkthaiuogshprhmwsgnwlwslkctkcquogpggcifdfbyomwsprrldamuwltoavkaxqptonhslywlhsoiszphqfbbrcccrmwwvbcyccwkvxgolvenphmjcejhqfblivmjsmwsvyowicjvgbuhmuogspicogrslrutxbakstrvwkvxg

在第一题中使用的是凯撒密码:使用移位处理。而这题中的使用的Vigenere维吉尼亚密码:就是确定密钥后,分组多次使用凯撒密码。所以破解维吉尼亚密码:关键在于确定密钥的长度t。分解后每组就是一个凯撒密码,即组内的位移量是一致的,对每一组即可用频度分析法来解密。
确定密钥长度主要有两种方法,Kasiski 测试法相对简单很多,但Friedman 测试法的效果明显优于Kasiski 测试法。
方法一 Kasiski方法:
当密文很长的时候,可以找出几组重复的密文段,找出它们间距的相同约数,就是密钥长度。在密文中出现相同的子串之间的距离可能是t的倍数,找出所有的相同的子串的距离,尤其出现次数较多的(避免巧合),t是这些距离的最大公约数。
方法二 Friedman试验:
首先我们需要知道重合指数(IC, index of coincidence)的概念:任意取两个字母(取后放回),使之结果相同的概率。
英语中的重合指数定义如下:

由老师给每个字母出现的概率图片,可算得其结果为0.065
破解维吉尼亚密码的两个步骤:
1、确定密钥长度。
遍历密钥长度,使得某一个密钥长度下的分组算得的重合因子其结果接近0.065,可用以下公式:

其中,i为英文字母顺序表中的第i个字母,ni为其在密文分组中出现的频数,N为该分组的长度。如果该密钥长度下的各个分组算得的平均重合因子的结果接近0.065,则找到正确的密钥长度。否则,换下一个密钥长度测试。
2、进行频率分析。
密文确定密钥长度后,可将密文划分成相应的分组。在划分出来的任一分组中,明文和密文都是通过同一个字母实现移位加密的,此时,只需将密文相对于明文进行移位测试,找出具有重合因子接近0.065的位移,即可确定该分组的偏移量,其他分组同理。可用以下公式:

(j的取值为[0,25],即我们需要求的偏移量)。可理解成:明文中出现的第i个字母可能映射成了密文中的第i+j个字母(两个"字母"都已经按顺序排好,但出现的频数不一定相同)
单字母替换(Mono-Alphabetic Substitution):将明文中的字母进行随机替换,密钥空间为26!
在这里,我采用的是Friedman测试法确定密钥长度,整个解密过程大致如下:
1、Friedman测试法确定密钥长度(找到某个密钥长度下的各个分组算得的平均重合因子的结果接近0.065)。
2、根据密钥长度分组。
3、确定密钥(根据每个字母出现的频率和英文字母频率表对照)。
4、根据密钥和分组,分别解密。
5、最后合并输出。
源代码:Vigenere.java

public class Vigenere {
    public static void main(String[] args) {
        /*密文*/
        String cipher = "ivikdkdqmjglpwlzgmpfbjiidbbysljdxfgbiwwehapheysgnccyootstzabcobvrtazeywvwwazaidgazpethpvbpwobvjxgfmdobcgpfkxkszzaigcjrpetacjhuthpvhkjhpzhfpmevzeqsbyomhsdvftasfgztcobzcghfmdobcwvnvbrvkrgxdbmkfbtgbvgmptbvfmtgblbmxzweshgcbyskdtbysfwoarqhcjqeqbcuidcnchwwgnedwihptkqczgdkigdenhpzgigwvtwiasbfhatqijsbcdwzbmpgqkkthtqigmefmjsgislkcfthpvfxlszvhagsmgclhwjcsxmdtrbtiwweghuhpvgxrzcjwhcczzbvpfkvftiwwecyivqjuxchtvatcwvrbhjhpfiltcnywluobyskhaiegbdbbysktkijhatsfgztcobzcgivikvxloazbaxrqeuydfitfbbswihaphpvkthaiuogshprhmwsgnwlwslkctkcquogpggcifdfbyomwsprrldamuwltoavkaxqptonhslywlhsoiszphqfbbrcccrmwwvbcyccwkvxgolvenphmjcejhqfblivmjsmwsvyowicjvgbuhmuogspicogrslrutxbakstrvwkvxg";
        String ciphertext = cipher.toUpperCase();
        Vigenere vigenere = new Vigenere();
        /*Vigenere解密*/
        vigenere.decryptCipher(vigenere.Friedman(ciphertext), ciphertext);
    }

    // Friedman测试法确定密钥长度
    private int Friedman(String ciphertext) {
        // 猜测密钥长度
        int keyLength = 1;
        // 重合指数
        double[] Ic;
        // 平均重合指数
        double avgIc;
        // 密文分组
        ArrayList<String> cipherGroup;

        while (true) {
            /*各个属性的实例化*/
            Ic = new double[keyLength];
            cipherGroup = new ArrayList<>();
            avgIc = 0;

            // 1 先根据密钥长度分组
            for (int i = 0; i < keyLength; ++i) {
                StringBuilder tempGroup = new StringBuilder();
                for (int j = 0; i + j * keyLength < ciphertext.length(); ++j) {
                    tempGroup.append(ciphertext.charAt(i + j * keyLength));
                }
                cipherGroup.add(tempGroup.toString());
            }

            // 2 再计算每一组的重合指数
            for (int i = 0; i < keyLength; ++i) {
                // 子串
                String subCipher = cipherGroup.get(i);
                // 字母及其出现的次数
                HashMap<Character, Integer> occurrenceNumber = new HashMap<>();

                // 2.1 初始化字母及其次数键值对
                for (int h = 0; h < 26; ++h) {
                    occurrenceNumber.put((char) (h + 65), 0);
                }

                // 2.2 统计每个字母出现的次数
                for (int j = 0; j < subCipher.length(); ++j) {
                    occurrenceNumber.put(subCipher.charAt(j), occurrenceNumber.get(subCipher.charAt(j)) + 1);
                }

                // 2.3 计算重合指数
                double denominator = Math.pow((double) subCipher.length(), 2);
                for (int k = 0; k < 26; ++k) {
                    double o = (double) occurrenceNumber.get((char) (k + 65));
                    Ic[i] += o * (o - 1);
                }
                Ic[i] /= denominator;
            }

            // 3 判断退出条件,重合指数的平均值是否大于0.065
            for (int i = 0; i < keyLength; ++i) {
                avgIc += Ic[i];
            }
            avgIc /= (double) keyLength;
            if (avgIc >= 0.06) {
                break;
            } else {
                keyLength++;
            }
        } // while--end

        // 打印密钥长度,分组,重合指数,平均重合指数
        System.out.println("密钥长度为:" + String.valueOf(keyLength));
        System.out.println("密文分组及其重合指数为:");

        for (int i = 0; i < keyLength; ++i) {
            System.out.println(cipherGroup.get(i).toLowerCase() + "   重合指数: " + Ic[i]);
        }
        System.out.println("平均重合指数为: " + String.valueOf(avgIc));

        return keyLength;
    }// Friedman--end

    // 再次使用重合指数法确定密钥
    private void decryptCipher(int keyLength, String ciphertext) {
        /*密钥数组,密钥字符对应的ascii码*/
        int[] key = new int[keyLength];
        /*密文分组*/
        ArrayList<String> cipherGroup = new ArrayList<>();
        /*英文中26个字母的频率*/
        double[] probability = new double[]{0.082, 0.015, 0.028, 0.043, 0.127, 0.022, 0.02, 0.061, 0.07, 0.002, 0.008,
                0.04, 0.024, 0.067, 0.075, 0.019, 0.001, 0.06, 0.063, 0.091, 0.028, 0.01, 0.023, 0.001, 0.02, 0.001};

        // 1 先根据密钥长度分组
        for (int i = 0; i < keyLength; ++i) {
            /*密文分组的中间字符串对象*/
            StringBuilder temporaryGroup = new StringBuilder();
            for (int j = 0; i + j * keyLength < ciphertext.length(); ++j) {
                /*按照密钥的长度将密文分组*/
                temporaryGroup.append(ciphertext.charAt(i + j * keyLength));
            }
            /*将每个密文分组加到数组表中去*/
            cipherGroup.add(temporaryGroup.toString());
        }

        // 2 确定密钥
        for (int i = 0; i < keyLength; ++i) {
            // 重合指数
            double MG;
            // 移动位置
            int flag;
            // 密文移动g个位置
            int g = 0;
            // 字母出现次数
            HashMap<Character, Integer> occurrenceNumber;
            // 子串,用来接收每个密文分组
            String subCipher;

            while (true) {
                MG = 0;
                flag = 65 + g;
                /*取出密文分组*/
                subCipher = cipherGroup.get(i);
                occurrenceNumber = new HashMap<>();

                // 2.1 初始化字母及其次数
                for (int h = 0; h < 26; ++h) {
                    /*在哈希图中将键设为26个字母对应的ascii码,初值设为0*/
                    occurrenceNumber.put((char) (h + 65), 0);
                }

                // 2.2 统计字母出现次数
                for (int j = 0; j < subCipher.length(); ++j) {
                    /*出现对应的字母,就将它出现的次数+1*/
                    occurrenceNumber.put(subCipher.charAt(j), occurrenceNumber.get(subCipher.charAt(j)) + 1);
                }

                // 2.3 计算当前分组各个字母的重合指数,得到该组的重合指数
                for (int k = 0; k < 26; ++k, ++flag) {
                    double p = probability[k];
                    flag = (flag == 91) ? 65 : flag;
                    double f = (double) occurrenceNumber.get((char) flag) / subCipher.length();
                    MG += p * f;
                }

                // 2.4 判断退出条件
                if (MG >= 0.055) {
                    key[i] = g;
                    break;
                } else {
                    ++g;
                }
            } // while--end
        } // for--end

        // 3 打印密钥
        StringBuilder keyString = new StringBuilder();
        for (int i = 0; i < keyLength; ++i) {
            /*将密钥的ascii码装换成字符,再添加再字符串后面*/
            keyString.append((char) (key[i] + 65));
        }
        System.out.println("密钥为: " + keyString.toString());

        // 4 解密
        StringBuilder plainBuffer = new StringBuilder();
        for (int i = 0; i < ciphertext.length(); ++i) {
            /*每个密文字母编号对应的密钥字母编号*/
            int keyFlag = i % keyLength;
            /*用每个密文字母的ascii码减去对应的密钥字母的ascii码*/
            int change = (int) ciphertext.charAt(i) - 65 - key[keyFlag];
            /*将ascii码转换成字符*/
            char plainLetter = (char) ((change < 0 ? (change + 26) : change) + 65);
            /*添加在字符串后面*/
            plainBuffer.append(plainLetter);
        }
        System.out.println("明文为:\n" + plainBuffer.toString().toLowerCase());
    }
}

实验结果截图:
在这里插入图片描述

最后解密的明文为:That process said is tarts upon the supposition that when you have eliminated all which is impossible,then whatever remain show ever improbable must be the truth.It may well be that several explanations remain in which case one tries test after test until one or other of them has a convincing amount of support. We will now
apply this principle to the case in point as it was first presented to me. There were three possible explanations of these exclusion or incarceration of this gentle man in an out house of his father’s mansion. There was the explanation that he was in hiding for a crime or that he was mad and that they wished to avoid an asylum or that he had some disease which caused his segregation. I could think of no other adequate solutions, these then had to be sifted and balanced against each other.

4.Rar file without password

rar的压缩文档中是提供一个CRC32的值,这个值是文档在压缩之前的CRC32值,相信很多人都知道:每个不同的文件都有基本唯一的一个CRC32值。

CRC全称为循环冗余校验(Cyclic Redundancy Check, CRC),用来校验文件是否出错但并不能用于自动纠错。这种爆破方式只适用于文本文件较小的情况下,如果很大,不如去爆破密码。基本上不同文件都有唯一的CRC32值,那么在文件内容较小的情况下就更不可能重复了。
因为txt文本中的内容较短,所以我们可以用暴力穷举文本内容,只要找到相同的CRC码,即找到正确的文本内容。
源代码:CRC32.py

import binascii
#import string
#各种打印字符
#dic=string.printable
dic=range(0,128)
crc = 0x05665E74 # 记得要以0x开头
def CrackCrc(crc):
    for i in dic :
        for j in dic:
            for p in dic:
                s = str(chr(i)+chr(j)+chr(p)).encode("utf-8")
                #在 Python 2.x 的版本中,binascii.crc32 所计算出來的 CRC 值域为[-2^31, 2^31-1] 之间的有符号整数,为了要与一般CRC 结果作比对,需要将其转为无符号整数,所以加上& 0xffffffff来进行转换。
                # 如果是 Python 3.x 的版本,其计算结果为 [0, 2^32-1] 间的无符号整数,因此不需额外加上& 0xffffffff 。
                #if crc == (binascii.crc32(s) & 0xffffffff):
                if crc == binascii.crc32(s):
                    #Python3中字符都为unicode编码,必须先转码utf-8
                    print(str(s,'utf-8'))
                    print("CRC冲撞攻击解密的明文为:"+str(s,'utf-8'))
CrackCrc(crc)

实验结果截图:
在这里插入图片描述

最后rate.rar中的rate.txt解密的明文为:77%。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值