[网络安全自学篇] 八十八.基于机器学习的恶意代码检测技术详解

122 篇文章 3387 订阅 ¥49.90 ¥99.00
本文是网络安全自学系列的一部分,主要讲解基于机器学习的恶意代码检测技术,涵盖机器学习基础、恶意代码的静态动态检测、深度学习在恶意代码检测中的应用以及机器学习算法在工业界的应用。文章通过实例介绍了特征工程、不同机器学习算法,如SVM、神经网络,并对比了静态分析和动态分析的优缺点。同时,提到了在实际应用中面临的挑战,如误报率、模型可解释性和对抗性攻击。此外,还讨论了机器学习在反病毒软件中的角色,强调了它与传统方法的互补性以及未来研究方向。
摘要由CSDN通过智能技术生成

这是作者网络安全自学教程系列,主要是关于安全工具和实践操作的在线笔记,特分享出来与博友们学习,希望您喜欢,一起进步。前文分享了传统的恶意代码检测技术,包括恶意代码检测的对象和策略、特征值检测技术、校验和检测技术、启发式扫描技术、虚拟机检测技术和主动防御技术。这篇文章将介绍基于机器学习的恶意代码检测技术,主要参考郑师兄的视频总结,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。同时,我再结合自己的经验进行扩充,详细分享了基于机器学习的恶意代码检测技术,基础性文章,希望对您有所帮助~

作者作为网络安全的小白,分享一些自学基础教程给大家,主要是关于安全工具和实践操作的在线笔记,希望您们喜欢。同时,更希望您能与我一起操作和进步,后续将深入学习网络安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不易,大神们不喜勿喷,谢谢!如果文章对您有帮助,将是我创作的最大动力,点赞、评论、私聊均可,一起加油喔~

推荐作者之前介绍的四篇机器学习宇恶意代码检测相关的文章,如下:

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值