深度学习的MNIST手写数字数据集识别方式(准确率99%,附代码)

这篇文章主要介绍了深度学习的MNIST手写数字数据集识别方式(准确率99%,附代码),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
Python客栈送红包、纸质书

1.Mnist数据集介绍

1.1 基本介绍
Mnist数据集可以算是学习深度学习最常用到的了。

这个数据集包含70000张手写数字图片,分别是60000张训练图片和10000张测试图片,训练集由来自250个不同人手写的数字构成,一般来自高中生,一半来自工作人员,测试集(test set)也是同样比例的手写数字数据,并且保证了测试集和训练集的作者不同。

每个图片都是2828个像素点,数据集/会把一张图片的数据转成一个2828=784的一维向量存储起来。

里面的图片数据如下所示,每张图是0-9的手写数字黑底白字的图片,存储时,黑色用0表示,白色用0-1的浮点数表示。

1.2 数据集下载
1)官网下载

Mnist数据集的下载地址如下:MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges

打开后会有四个文件:

训练数据集:train-images-idx3-ubyte.gz
训练数据集标签:train-labels-idx1-ubyte.gz
测试数据集:t10k-images-idx3-ubyte.gz
测试数据集标签:t10k-labels-idx1-ubyte.gz
将这四个文件下载后放置到需要用的文件夹下即可不要解压!下载后是什么就怎么放!

2)代码导入

文件夹下运行下面的代码,即可自动检测数据集是否存在,若没有会自动进行下载,下载后在这一路径:

# 下载数据集
from torchvision import datasets, transforms
 
train_set = datasets.MNIST("data",train=True,download=True, transform=transforms.ToTensor(),)
test_set = datasets.MNIST("data",train=False,download=True, transform=transforms.ToTensor(),)

参数解释:

datasets.MNIST:是Pytorch的内置函数torchvision.datasets.MNIST,可以导入数据集
train=True :读入的数据作为训练集
transform:读入我们自己定义的数据预处理操作
download=True:当我们的根目录(root)下没有数据集时,便自动下载
如果这时候我们通过联网自动下载方式download我们的数据后,它的文件路径是以下形式:原文件夹/data/MNIST/raw

2.代码部分

2.1文件夹目录

test:自己写的测试图片
main:主函数
model:训练的模型参数,会自动生成
data:数据集文件夹 2.2 运行结果
14轮左右,模型识别准确率达到99%以上

2.3代码
1) 导入必要的包及预处理

本人学习时做了较多注释,且用的是下载好的文件,如果是自己的请更改对应的文件目录哦。

import os
import matplotlib.pyplot as plt
import torch
from PIL import Image
from torch import nn
from torch.nn import Conv2d, Linear, ReLU
from torch.nn import MaxPool2d
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
 
 
# Dataset:创建数据集的函数;__init__:初始化数据内容和标签
# __geyitem:获取数据内容和标签
# __len__:获取数据集大小
# daataloader:数据加载类,接受来自dataset已经加载好的数据集
# torchbision:图形库,包含预训练模型,加载数据的函数、图片变换,裁剪、旋转等
# torchtext:处理文本的工具包,将不同类型的额文件转换为datasets
 
# 预处理:将两个步骤整合在一起
transform = transforms.Compose({
    transforms.ToTensor(),  # 将灰度图片像素值(0~255)转为Tensor(0~1),方便后续处理
    # transforms.Normalize((0.1307,),(0.3081)),    # 归一化,均值0,方差1;mean:各通道的均值std:各通道的标准差inplace:是否原地操作
})

2)加载数据集

# 加载数据集
# 训练数据集
train_data = MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
# transform:指示加载的数据集应用的数据预处理的规则,shuffle:洗牌,是否打乱输入数据顺序
# 测试数据集
test_data = MNIST(root="./data", train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True)
 
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

3)构建模型

成功运行的话请给个免费的赞吧!(调试不易)

模型主要由两个卷积层,两个池化层,以及三个全连接层构成,激活函数使用relu.

class MnistModel(nn.Module):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.conv1 = Conv2d(in_channels=1, out_channels=10, kernel_size=5, stride=1, padding=0)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(in_channels=10, out_channels=20, kernel_size=5, stride=1, padding=0)
        self.maxpool2 = MaxPool2d(2)
        self.linear1 = Linear(320, 128)
        self.linear2 = Linear(128, 64)
        self.linear3 = Linear(64, 10)
        self.relu = ReLU()
 
    def forward(self, x):
        x = self.relu(self.maxpool1(self.conv1(x)))
        x = self.relu(self.maxpool2(self.conv2(x)))
        x = x.view(x.size(0), -1)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
 
        return x
 
# 损失函数CrossentropyLoss
model = MnistModel()#实例化
criterion = nn.CrossEntropyLoss()   # 交叉熵损失,相当于Softmax+Log+NllLoss
# 线性多分类模型Softmax,给出最终预测值对于10个类别出现的概率,Log:将乘法转换为加法,减少计算量,保证函数的单调性
# NLLLoss:计算损失,此过程不需要手动one-hot编码,NLLLoss会自动完成
 
# SGD,优化器,梯度下降算法e
optimizer = torch.optim.SGD(model.parameters(), lr=0.14)#lr:学习率

4)模型训练

每次训练完成后会自动保存参数到pkl模型中,如果路径中有Pkl文件,下次运行会自动加载上一次的模型参数,在这个基础上继续训练,第一次运行时没有模型参数,结束后会自动生成。

# 模型训练
def train():
    # index = 0
    for index, data in enumerate(train_loader):#获取训练数据以及对应标签
        # for data in train_loader:
       input, target = data   # input为输入数据,target为标签
       y_predict = model(input) #模型预测
       loss = criterion(y_predict, target)
       optimizer.zero_grad() #梯度清零
       loss.backward()#loss值反向传播
       optimizer.step()#更新参数
       # index += 1
       if index % 100 == 0: # 每一百次保存一次模型,打印损失
           torch.save(model.state_dict(), "./model/model.pkl")   # 保存模型
           torch.save(optimizer.state_dict(), "./model/optimizer.pkl")
           print("训练次数为:{},损失值为:{}".format(index, loss.item() ))

5)加载模型

第一次运行这里需要一个空的model文件夹

# 加载模型
if os.path.exists('./model/model.pkl'):
   model.load_state_dict(torch.load("./model/model.pkl"))#加载保存模型的参数

6)模型测试

# 模型测试
def test():
    correct = 0     # 正确预测的个数
    total = 0   # 总数
    with torch.no_grad():   # 测试不用计算梯度
        for data in test_loader:
            input, target = data
            output = model(input)   # output输出10个预测取值,概率最大的为预测数
            probability, predict = torch.max(input=output.data, dim=1)    # 返回一个元祖,第一个为最大概率值,第二个为最大概率值的下标
            # loss = criterion(output, target)
            total += target.size(0)  # target是形状为(batch_size,1)的矩阵,使用size(0)取出该批的大小
            correct += (predict == target).sum().item()  # predict 和target均为(batch_size,1)的矩阵,sum求出相等的个数
        print("测试准确率为:%.6f" %(correct / total))

7)自己手写数字图片识别函数(可选用)

这部分主要是加载训练好的pkl模型测试自己的数据,因此在进行自己手写图的测试时,需要有训练好的pkl文件,并且就不要调用train()函数和test()函数啦

注意:这个图片像素也要说黑底白字,28*28像素,否则无法识别

def test_mydata():
    image = Image.open('./test/test_two.png')   #读取自定义手写图片
    image = image.resize((28, 28))   # 裁剪尺寸为28*28
    image = image.convert('L')  # 转换为灰度图像
    transform = transforms.ToTensor()
    image = transform(image)
    image = image.resize(1, 1, 28, 28)
    output = model(image)
    probability, predict = torch.max(output.data, dim=1)
    print("此手写图片值为:%d,其最大概率为:%.2f " % (predict[0], probability))
    plt.title("此手写图片值为:{}".format((int(predict))), fontname='SimHei')
    plt.imshow(image.squeeze())
    plt.show()

8)MNIST中的数据识别测试数据

训练过程中的打印信息我进行了修改,这里设置的训练轮数是15轮,每次训练生成的pkl模型参数也是会更新的,想要更多训练信息可以查看对应的教程哦~

#测试识别函数
if __name__ == '__main__':
    #训练与测试
    for i in range(15):#训练和测试进行15轮
        print({"————————第{}轮测试开始——————".format (i + 1)})
        train()
        test()

9)测试自己的手写数字图片(可选)

这部分主要是与tset_mydata()函数结合,加载训练好的pkl模型测试自己的数据,因此在进行自己手写图的测试时,需要有训练好的pkl文件,并且就不要调用train()函数和test()函数啦。

注意:这个图片像素也要说黑底白字,28*28像素,否则无法识别

# 测试主函数
if __name__ == '__main__':
    test_mydata()

将所有代码按顺序放到编辑器中,安装好对应的包,就可以顺利运行啦。

完整代码放下面:

import os
import matplotlib.pyplot as plt
import torch
from PIL import Image
from torch import nn
from torch.nn import Conv2d, Linear, ReLU
from torch.nn import MaxPool2d
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
 
 
# Dataset:创建数据集的函数;__init__:初始化数据内容和标签
# __geyitem:获取数据内容和标签
# __len__:获取数据集大小
# daataloader:数据加载类,接受来自dataset已经加载好的数据集
# torchbision:图形库,包含预训练模型,加载数据的函数、图片变换,裁剪、旋转等
# torchtext:处理文本的工具包,将不同类型的额文件转换为datasets
 
# 预处理:将两个步骤整合在一起
transform = transforms.Compose({
    transforms.ToTensor(),  # 将灰度图片像素值(0~255)转为Tensor(0~1),方便后续处理
    # transforms.Normalize((0.1307,),(0.3081)),    # 归一化,均值0,方差1;mean:各通道的均值std:各通道的标准差inplace:是否原地操作
})
 
# normalize执行以下操作:image=(image-mean)/std?????
# input[channel] = (input[channel] - mean[channel]) / std[channel]
 
# 加载数据集
# 训练数据集
train_data = MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_data, batch_size=64, shuffle=True)
# transform:指示加载的数据集应用的数据预处理的规则,shuffle:洗牌,是否打乱输入数据顺序
# 测试数据集
test_data = MNIST(root="./data", train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True)
 
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# print(test_data)
# print(train_data)
 
 
class MnistModel(nn.Module):
    def __init__(self):
        super(MnistModel, self).__init__()
        self.conv1 = Conv2d(in_channels=1, out_channels=10, kernel_size=5, stride=1, padding=0)
        self.maxpool1 = MaxPool2d(2)
        self.conv2 = Conv2d(in_channels=10, out_channels=20, kernel_size=5, stride=1, padding=0)
        self.maxpool2 = MaxPool2d(2)
        self.linear1 = Linear(320, 128)
        self.linear2 = Linear(128, 64)
        self.linear3 = Linear(64, 10)
        self.relu = ReLU()
 
    def forward(self, x):
        x = self.relu(self.maxpool1(self.conv1(x)))
        x = self.relu(self.maxpool2(self.conv2(x)))
        x = x.view(x.size(0), -1)
        x = self.linear1(x)
        x = self.linear2(x)
        x = self.linear3(x)
 
        return x
 
 
# 损失函数CrossentropyLoss
model = MnistModel()#实例化
criterion = nn.CrossEntropyLoss()   # 交叉熵损失,相当于Softmax+Log+NllLoss
# 线性多分类模型Softmax,给出最终预测值对于10个类别出现的概率,Log:将乘法转换为加法,减少计算量,保证函数的单调性
# NLLLoss:计算损失,此过程不需要手动one-hot编码,NLLLoss会自动完成
 
# SGD,优化器,梯度下降算法e
optimizer = torch.optim.SGD(model.parameters(), lr=0.14)#lr:学习率
 
 
# 模型训练
def train():
    # index = 0
    for index, data in enumerate(train_loader):#获取训练数据以及对应标签
        # for data in train_loader:
       input, target = data   # input为输入数据,target为标签
       y_predict = model(input) #模型预测
       loss = criterion(y_predict, target)
       optimizer.zero_grad() #梯度清零
       loss.backward()#loss值反向传播
       optimizer.step()#更新参数
       # index += 1
       if index % 100 == 0: # 每一百次保存一次模型,打印损失
           torch.save(model.state_dict(), "./model/model.pkl")   # 保存模型
           torch.save(optimizer.state_dict(), "./model/optimizer.pkl")
           print("训练次数为:{},损失值为:{}".format(index, loss.item() ))
 
# 加载模型
if os.path.exists('./model/model.pkl'):
   model.load_state_dict(torch.load("./model/model.pkl"))#加载保存模型的参数
 
 
# 模型测试
def test():
    correct = 0     # 正确预测的个数
    total = 0   # 总数
    with torch.no_grad():   # 测试不用计算梯度
        for data in test_loader:
            input, target = data
            output = model(input)   # output输出10个预测取值,概率最大的为预测数
            probability, predict = torch.max(input=output.data, dim=1)    # 返回一个元祖,第一个为最大概率值,第二个为最大概率值的下标
            # loss = criterion(output, target)
            total += target.size(0)  # target是形状为(batch_size,1)的矩阵,使用size(0)取出该批的大小
            correct += (predict == target).sum().item()  # predict 和target均为(batch_size,1)的矩阵,sum求出相等的个数
        print("测试准确率为:%.6f" %(correct / total))
 
 
#测试识别函数
if __name__ == '__main__':
    #训练与测试
    for i in range(15):#训练和测试进行5轮
        print({"————————第{}轮测试开始——————".format (i + 1)})
        train()
        test()
 
 
def test_mydata():
    image = Image.open('./test/test_two.png')   #读取自定义手写图片
    image = image.resize((28, 28))   # 裁剪尺寸为28*28
    image = image.convert('L')  # 转换为灰度图像
    transform = transforms.ToTensor()
    image = transform(image)
    image = image.resize(1, 1, 28, 28)
    output = model(image)
    probability, predict = torch.max(output.data, dim=1)
    print("此手写图片值为:%d,其最大概率为:%.2f " % (predict[0], probability))
    plt.title("此手写图片值为:{}".format((int(predict))), fontname='SimHei')
    plt.imshow(image.squeeze())
    plt.show()
 
# 测试主函数
# if __name__ == '__main__':
#     test_mydata()

总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持vb.net教程C#教程python教程SQL教程access 2010教程xin3721自学网

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST手写数字识别MNIST是一个常用的数据集,包含了大量手写数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现手写数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的手写数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST手写数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰图像,需要将其转换为标准的三通道RGB图像。 ```python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) ``` 第二步是构建模型。在MNIST手写数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于手写数字识别非常有用。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() ``` 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯下降(SGD)优化器进行训练。 ```python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist手写数字识别mnist手写数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist手写数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的手写数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist手写数字识别代码: ``` python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上就是一个基于PyTorch的mnist手写数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值