统计 MNIST 手写数字数据集中每个数字的个数

训练集

先上结论,MNIST 训练集共 60,000 个实例,0~9 各个数字的实例个数如下表:

数字个数
05923
16742
25958
36131
45842
55421
65918
76265
85851
95949
import torchvision

# 加载 MNIST 训练集
train_dataset = torchvision.datasets.MNIST(
    root='dataset/',
    train=True,
    download=True
)

# 获取训练集所有标签个数
targets = train_dataset.targets		# 共 60,000 个训练实例

# 声明长度为 10 的数组,数组中的第 0 个元素记录数字 0 的个数,依次类推
num_count = [0] * 10

# 遍历所有训练集标签
for i in targets:
    # 获取该数字标签
    num = i.item()
    # 该数字对应计数 +1
    num_count[num] += 1

print(num_count)    # [5923, 6742, 5958, 6131, 5842, 5421, 5918, 6265, 5851, 5949]

测试集

先上结论,MNIST 测试集共 10,000 个实例,0~9 各个数字的实例个数如下表:

数字个数
0980
11135
21032
31010
4982
5892
6958
71028
8974
91009
import torchvision

# 加载 MNIST 测试集
test_dataset = torchvision.datasets.MNIST(
    root='dataset/',
    train=False,
    download=True
)

# 获取测试集所有标签个数
targets = test_dataset.targets		# 共 10,000 个测试实例

# 声明长度为 10 的数组,数组中每个元素初始化为 0. 
# 数组中的第 0 个元素记录数字 0 的个数,依次类推
num_count = [0] * 10

# 遍历所有测试集标签
for i in targets:
    # 获取该数字标签
    num = i.item()
    # 该数字对应计数 +1
    num_count[num] += 1

print(num_count)    # [980, 1135, 1032, 1010, 982, 892, 958, 1028, 974, 1009]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

悄悄地努力

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值