容量规划和Region配置

欢迎转载,请注明:http://blog.csdn.net/oozie123


当我们规划HBase集群容量和执行初始配置时,有很多注意事项。合理配置我们得对HBase内部数据的处理有深入的理解。

1 节点数和硬件/VM配置

1.1物理数据大小

你的数据在磁盘上的物理数据大小与逻辑数据大小截然不同,而且被下面选项影响:

  • 增加的HBase开销。
  • keyvalue and keysize,每个keyvalue (Cell)最少24字节,小的keyvalue 意味着相对应小开销。
  • keyvalue instances 聚合成blocks,blocks是被索引的,索引也是会被储存,Blocksize是基于每一个列簇配置。

译者注:Blocksize配置越大,意味着建立的索引越少,命中的概率也会降低。不同场景,请进行合理规划。

  • 压缩和数据块编码。
  • region server wal大小(通常小于RS内存的一半)。
  • HDFS replication数。

撇开磁盘空间是储存数据的必要条件,1个RS也不能可能储存任意大容量的数据,由于某些像region count和size的限制。

1.2Read/Write吞吐量

计算系统读写吞吐量时,要考虑有多少节点被驱动。每个节点的吞吐量依据数据量和请求模式。根据测试负载的峰值,来规划节点数目的增加。PerformanceEvaluation 和 ycsb工具可以用来测试单个节点和一个测试集群。
对于读,通常5-15Mb/s 每个RS可以被尝试,因为每个RS仅仅有一个活跃的WAL。对于读,没有很好的评估标准,它取决于数据量,请求数,cache命中率。

1.3JVM GC限制

由于GC的花费,RS不能运用非常大的堆内存,也没有好的方式在一个服务器上运行多个RS-es(不是在一台机器上运行多个VMs),这样,推荐使用20~24GB或者更少的内存用于每一个RS。GC调优需要非常大的内存,参见gcpause0, trouble.log.gc

2 配置region数量和大小

通常少量的regions,集群会运行非常流畅(你可以总是稍微晚些手动split大的regions(如果有必要),或者同过集群负载均衡)。20~200个regions每个RS是比较合理的范围,每个RS的regions数量不能直接配置(除非全部配置disable.splitting),根据给定表大小,调整region的大小。
注意,每张表的region大多数配置可以通过HTableDescriptorshell commands配置。这些配置会覆盖hbase-site.xml,通常这在你的表被不同工作负荷使用时特别有用。
另外注意region的大小,HDFS replication 因子不会被考虑进去,而ops.capacity.nodes.datasize会被纳入考虑。所以如果你的数据是压缩的, replication 是3,9GB region意味着9GB的压缩数据。HDFS replication只会影响磁盘空间,并且大多数HBase代码不可见。

2.1 查看当前regions数

可以通过HMaster UI或者bin/hbase hbck command进行查看。

2.2 每个RS中regions上界

通常每个RS最大regions数目决定于memstore memory的使用情况,每个region拥有自己的memstores,它们是可配置的,通常是128~256MB,参考hbase.hregion.memstore.flush.size。RS通过指明总内存的百分比给予它的memstores参考hbase.regionserver.global.memstore.size
如果内存超过警戒值,会引起一些不良的后果,诸如服务器反应延迟,合并风暴。一个好的起始点指示每个RS该拥有的regions数目为:

((RS memory) * (total memstore fraction)) / ((memstore size)*(# column families))

公式是伪代码,有两种公式可用,第一个是HBase 0.98+ 和第二个是 HBase 0.94.x
HBase 0.98.x

((RS Xmx) * hbase.regionserver.global.memstore.size) / (hbase.hregion.memstore.flush.size * (# column families))

HBase 0.94.x

((RS Xmx) * hbase.regionserver.global.memstore.upperLimit) / (hbase.hregion.memstore.flush.size * (# column families))+

如果给每个RS 16GB内存,按照公式,在起点,每个RS将拥有16384*0.4/128 ~ 51个regions。该公式可以扩张到多表。
该计算结果可以被调整公式是假设所有你的regions大约已同样的速度都被填满。如果你的regions只有一部分处于活跃写的状态,你可以调大regions数。即使是所有的regions都在写入,所有的region memstores也不会填满,由于有并发flush数目的限制。这样我们可以设置2~3倍regions数量作为起始点,然而增加regions也就意味找增加风险。

2.3 每个RS中regions下界

如果你拥有大量的数据,可能你想维护大量的regions数去避免每个region太大。

2.4 region大小极值

对于生产环境的大表,region大小的极值通常限制于合并,非常大的合并,如major会降低集群的性能。目前推荐最大region大小是10~20Gb, 5-10Gb 是最优的。
什么值会使一个region split成两个,它通过hbase.hregion.max.filesize配置。
如果你不能很好的估算region的开始大小,你最好直接使用默认值。对于热表,可能你会配置小点(或者手动split热region),如果你的cell比较大,你可以把region配置大点。

2.5 每个RS总数据量

通过上述region大小和每个RS中regions数,保守估计每个RS将维护10GB*100regions=1T数据量。然而考虑数据量和缓存大小比例在RS级别也很重要。每个服务器1TB数据,10GB block cache,仅仅只有1%数据被缓存,实在是太勉强。

3 初始化配置和调优

3.1 Compactions

依据读写体积和延迟需求,最优的合并策略是不同的,参考compaction
当数据量非常大时,请记住合并对写的吞吐量影响很大。这样,对于写密集型,你可能需要选择低频繁地合并和更多store files才合并。通设置hbase.hstore.compaction.min为更高值,增大最少合并文件数,同时调大hbase.hstore.blockingStoreFiles的值。另外你可以考虑使用手动管理合并,参考managed.compactions

3.2 表预分裂

我们可以在常见表的时候先创建一些regions,这样既可以避免昂贵地分裂,也可以确保表一开始就是分布在多个服务器。
如果一个表预期会增张到很大,则每个RS至少预分裂一个region,不建议直接split到目标值,一个中间值可以被选择。参考manual region splitting decisionsprecreate.regions

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值