4 月 29 日凌晨,Qwen3 模型「家族」终于正式亮相,共 8 款混合推理模型全部开源, 仅仅一天的时间便在 GitHub 斩获近 20k stars,而除了极高的讨论热度外,Qwen3 更是凭借性能的提升与部署成本的下探,一举问鼎开源大模型王座。
- 开源版本包含 2 个 MoE 模型:Qwen3-235B-A22B 和 Qwen3-30B-A3B;6 个 Dense 模型:Qwen3-32B、Qwen3-14B、Qwen3-8B、Qwen3-4B、Qwen3-1.7B 和 Qwen3-0.6B。
根据官方发布的数据,旗舰模型 Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,表现出与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 相媲美的能力。 值得一提的是,Qwen3-30B-A3B 的激活参数数量仅为 QwQ-32B 的 10%,但表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。
面对性能表现一举超越 OpenAI-o1 与 DeepSeek-R1 两大顶流的 Qwen3,全球开发者跃跃欲试,不少已经发布了一手实测评价,可谓是「好评如潮」。
*图源:X 用户 Hasan Toor*
X 用户 Jafar Najafov 对比了 Qwen3 与相同模型参数量的 Llama Qwen3 能更快地解决更难的问题
闲言少叙,为了让更多开发者能够便捷地体验 Qwen3 的超强性能,OpenBayes 已经上线了「使用 vLLM+Open-webUI 部署 Qwen3-30B-A3B」, 支持切换 32B Dense 模型,一键部署即可快速体验 demo。
此外,我们还为新用户准备了惊喜算力资源福利,使用邀请码「Qwen3-30B-A3B」注册即可获得 2 小时双卡 A6000 使用时长(资源有效期 1 个月), 数量有限,不要错过!
教程地址:
https://go.openbayes.com/CJDmk
此外,OpenBayes 还上线了「vLLM+Open-webUI 部署 Qwen3 系列模型」,该项目提供了 4 种型号的模型:
-
Qwen3-8B(默认使用)
-
Qwen3-4B
-
Qwen3-1.7B
-
Qwen3-0.6B
教程地址:
https://go.openbayes.com/f9sgO
Demo 运行
01 运行阶段
1.登录 http://OpenBayes.com,在「公共教程」页面,选择 「使用 vLLM+Open-webUI 部署 Qwen3-30B-A3B」教程。
- 页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。
- 选择「NVIDIA RTX A6000-2」以及「vllm」镜像。OpenBayes 平台提供了 4 种计费方式,大家可以按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。新用户使用下方邀请链接注册,可获得 4 小时 RTX 4090 + 5 小时 CPU 的免费时长!
小贝总专属邀请链接(直接复制到浏览器打开):
https://go.openbayes.com/9S6Dr
- 等待分配资源,首次克隆需等待 2 分钟左右的时间。当状态变为「运行中」后,打开「端口映射」下的访问地址,即可跳转至 Demo 页面。请注意,用户需在实名认证后才能使用 API 地址访问功能。
02 效果演示
五一假期马上到了,输入 prompt 「帮我做 1 个五一去北京的旅游攻略」。
可以看到它制定了详细的行程。
新用户福利
注册福利: 点击下方邀请链接注册,即可获得 4 小时 RTX 4090 + 5 小时 CPU 的免费算力时长,永久有效!
小贝总专属邀请链接(直接复制到浏览器打开):