OpenBayes 教程上新丨Qwen3狂揽近20k star,网友实测:比Llama更快解决更难问题

4 月 29 日凌晨,Qwen3 模型「家族」终于正式亮相,共 8 款混合推理模型全部开源, 仅仅一天的时间便在 GitHub 斩获近 20k stars,而除了极高的讨论热度外,Qwen3 更是凭借性能的提升与部署成本的下探,一举问鼎开源大模型王座。

  • 开源版本包含 2 个 MoE 模型:Qwen3-235B-A22B 和 Qwen3-30B-A3B;6 个 Dense 模型:Qwen3-32B、Qwen3-14B、Qwen3-8B、Qwen3-4B、Qwen3-1.7B 和 Qwen3-0.6B。

根据官方发布的数据,旗舰模型 Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,表现出与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 相媲美的能力。 值得一提的是,Qwen3-30B-A3B 的激活参数数量仅为 QwQ-32B 的 10%,但表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。

在这里插入图片描述

面对性能表现一举超越 OpenAI-o1 与 DeepSeek-R1 两大顶流的 Qwen3,全球开发者跃跃欲试,不少已经发布了一手实测评价,可谓是「好评如潮」。

在这里插入图片描述

*图源:X 用户 Hasan Toor*

在这里插入图片描述

X 用户 Jafar Najafov 对比了 Qwen3 与相同模型参数量的 Llama Qwen3 能更快地解决更难的问题

闲言少叙,为了让更多开发者能够便捷地体验 Qwen3 的超强性能,OpenBayes 已经上线了「使用 vLLM+Open-webUI 部署 Qwen3-30B-A3B」, 支持切换 32B Dense 模型,一键部署即可快速体验 demo。

此外,我们还为新用户准备了惊喜算力资源福利,使用邀请码「Qwen3-30B-A3B」注册即可获得 2 小时双卡 A6000 使用时长(资源有效期 1 个月), 数量有限,不要错过!

教程地址:

https://go.openbayes.com/CJDmk

此外,OpenBayes 还上线了「vLLM+Open-webUI 部署 Qwen3 系列模型」,该项目提供了 4 种型号的模型:

  • Qwen3-8B(默认使用)

  • Qwen3-4B

  • Qwen3-1.7B

  • Qwen3-0.6B

教程地址:

https://go.openbayes.com/f9sgO

Demo 运行

01 运行阶段

1.登录 http://OpenBayes.com,在「公共教程」页面,选择 「使用 vLLM+Open-webUI 部署 Qwen3-30B-A3B」教程。

在这里插入图片描述

  1. 页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。

在这里插入图片描述

  1. 选择「NVIDIA RTX A6000-2」以及「vllm」镜像。OpenBayes 平台提供了 4 种计费方式,大家可以按照需求选择「按量付费」或「包日/周/月」,点击「继续执行」。新用户使用下方邀请链接注册,可获得 4 小时 RTX 4090 + 5 小时 CPU 的免费时长!

小贝总专属邀请链接(直接复制到浏览器打开):

https://go.openbayes.com/9S6Dr

在这里插入图片描述

  1. 等待分配资源,首次克隆需等待 2 分钟左右的时间。当状态变为「运行中」后,打开「端口映射」下的访问地址,即可跳转至 Demo 页面。请注意,用户需在实名认证后才能使用 API 地址访问功能。

在这里插入图片描述

在这里插入图片描述

02 效果演示

五一假期马上到了,输入 prompt 「帮我做 1 个五一去北京的旅游攻略」。

在这里插入图片描述

可以看到它制定了详细的行程。

在这里插入图片描述

在这里插入图片描述

新用户福利

注册福利: 点击下方邀请链接注册,即可获得 4 小时 RTX 4090 + 5 小时 CPU 的免费算力时长,永久有效!

小贝总专属邀请链接(直接复制到浏览器打开):

https://go.openbayes.com/9S6Dr

### Ollama教程中加载Qwen2.5:3b模型的方法 在Ollama本地部署环境中,加载特定的大规模语言模型(如Qwen2.5:3b)通常涉及配置Docker容器以及指定相应的参数。以下是基于已知信息和标准操作流程的内容: #### Docker命令中的关键部分解析 为了运行带有GPU支持的Qwen2.5:3b模型,可以参考通用的Docker镜像启动方式,并调整具体选项来适配目标模型版本[^2]。 1. **端口映射** - `-p 3000:8080` 表示将主机上的3000端口映射到容器内的8080端口。 2. **启用GPU加速** - `--gpus all` 参数用于分配所有的可用GPU资源给容器实例,这对于处理大规模AI计算至关重要。 3. **数据卷挂载** - `-v open-webui:/app/backend/data` 创建了一个名为open-webui的数据卷并将其绑定至应用目录下的data子文件夹路径上,便于持久化存储相关设置或缓存资料。 4. **重启策略设定** - `--restart always` 确保即使发生意外停止情况也能自动恢复服务状态。 5. **镜像源地址** - 使用官方提供的ghcr.io仓库链接作为基础镜像来源(`ghcr.io/open-webui/open-webui:cuda`) ,其中包含了必要的CUDA驱动程序以充分利用NVIDIA硬件性能优势。 #### 配置Qwen2.5:3b模型的具体步骤说明 尽管上述例子未明确提及如何切换不同大小变体(例如从默认版转为轻量级的3Billion Parameters版本),但一般可通过如下几种途径实现自定义需求: - 如果存在预构建好的对应标签,则只需简单修改拉取语句即可完成替换工作;比如假设官方维护者已经上传好了专门针对该尺寸优化过的二进制包,那么可能只需要把最后面的部分改成类似于`:qwen2.5-3b-cuda`这样的形式。 ```bash docker pull ghcr.io/open-webui/open-webui:qwen2.5-3b-cuda ``` - 另外一种可能性是通过环境变量或者额外传递CLI flags的形式告知内部逻辑应该选取哪一类权重集合来进行初始化过程,在这种情况下就需要查阅具体的文档页面寻找是否有类似的开关机制可供利用了。 下面是综合考虑后的完整样例脚本展示: ```bash docker run \ -d \ -p 3000:8080 \ --gpus all \ -e MODEL_NAME="qwen2.5-3b" \ # 设置使用的模型名称为 qwen2.5-3b 版本 -v ollama-data:/root/.ollama # 添加一个位置用来保存下载下来的模型文件副本 --name ollama-qwen2.5-3b # 定义清晰的服务标识符方便后续管理识别 --restart unless-stopped # 加灵活可控的重激活条件 ghcr.io/ollama/ollama:latest # 替换为目标项目最的稳定发行版编号 ``` > 注意事项:以上仅为推测性的指导方案之一,实际执行前仍需参照最发布的权威指南确认细节差异之处是否存在偏差风险。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值