什么是机器学习?从机器学习原理、分类、方法、与传统编程的区别为你解释清楚

机器学习(Machine Learning,简称 ML)是人工智能(AI)领域中的一个核心分支,它让计算机通过数据学习经验,从而在没有明确编程的情况下进行预测、判断或行为决策

下面我将从原理、分类、方法、与传统编程的区别等多个维度为你系统地讲清楚“什么是机器学习”

一、机器学习的基本定义

机器学习是研究如何让计算机通过“学习”从数据中发现规律、进行预测或决策的一门学科。

经典定义(Arthur Samuel,1959):

“机器学习是一种让计算机具备从经验中自动学习并改进性能的能力,而不需要明确地编程。”


免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!

【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】

二、机器学习 vs. 传统编程

传统编程机器学习
人工定义规则(If...else...)自动从数据中学习规则
输入数据 + 程序 = 输出输入数据 + 输出结果 = 学习程序
规则由程序员写死规则通过模型训练获得
适用于规则明确的问题适用于模式识别、预测、复杂任务

举个例子:

  • 传统方式识别猫:程序员写规则,比如“有胡须”“耳朵三角形”...

  • 机器学习识别猫:提供大量图片 + 标签(猫 / 非猫),模型自动学习区分特征。


三、机器学习的三大类型

1. 监督学习(Supervised Learning)

  • 有“标签”的数据集(输入 + 输出)

  • 模型学习输入和输出之间的映射关系

常见任务:

  • 分类(识别垃圾邮件 vs 正常邮件)

  • 回归(预测房价、股票价格)

示例:

输入:房子的面积、位置、楼层
输出:价格(已知)
模型:通过学习大量数据来预测新房子的价格

2. 无监督学习(Unsupervised Learning)

  • 数据没有标签,模型需发现数据的结构和规律

常见任务:

  • 聚类(群体划分,比如用户画像)

  • 降维(如 PCA 用于数据可视化、压缩)

示例:

输入:客户的交易数据
目标:把客户自动分成不同群体(高消费、中消费、潜在用户)

3. 强化学习(Reinforcement Learning)

  • 智能体通过在环境中“试错”,根据奖励反馈不断改进策略

常见任务:

  • 游戏AI(如围棋、星际争霸)

  • 自动驾驶、机器人导航

核心理念:

动作 → 环境反馈 → 奖励 → 改进策略

四、机器学习的核心流程

  1. 数据收集:获取大量高质量数据

  2. 数据预处理:清洗、归一化、特征选择等

  3. 选择模型:如决策树、SVM、神经网络等

  4. 训练模型:通过算法从训练数据中学习参数

  5. 评估模型:使用测试集验证模型性能

  6. 部署与应用:在真实场景中使用模型

  7. 持续优化:通过新数据不断迭代提升性能


五、常见机器学习算法

算法应用领域
线性回归(Linear Regression)连续值预测(房价、气温)
逻辑回归(Logistic Regression)二分类问题(是否患病)
决策树 / 随机森林分类与回归
支持向量机(SVM)图像识别、文本分类
KNN(K-近邻)推荐系统、分类
K-Means聚类分析
主成分分析(PCA)降维与特征压缩
神经网络 / 深度学习图像识别、语音识别、自然语言处理

六、机器学习常见应用场景

  1. 推荐系统(如抖音、淘宝、Netflix 推荐内容)

  2. 语音识别(如 Siri、微信语音转文字)

  3. 图像识别(人脸识别、安防监控)

  4. 自然语言处理(聊天机器人、情感分析)

  5. 金融风控(信用评分、欺诈检测)

  6. 医疗诊断(预测疾病、辅助诊断)

  7. 工业预测性维护(提前发现设备故障)


七、机器学习的工具和语言

  • 编程语言:Python(主流)、R、Java(部分场景)

  • 主流库

    • scikit-learn(经典算法库)

    • TensorFlow、PyTorch(用于深度学习)

    • XGBoost、LightGBM(高效树模型)


总结一句话:

机器学习就是“用数据训练模型,让计算机自动发现规律,从而实现预测或分类”。

免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!

【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值