机器学习(Machine Learning,简称 ML)是人工智能(AI)领域中的一个核心分支,它让计算机通过数据学习经验,从而在没有明确编程的情况下进行预测、判断或行为决策。
下面我将从原理、分类、方法、与传统编程的区别等多个维度为你系统地讲清楚“什么是机器学习”。
一、机器学习的基本定义
机器学习是研究如何让计算机通过“学习”从数据中发现规律、进行预测或决策的一门学科。
经典定义(Arthur Samuel,1959):
“机器学习是一种让计算机具备从经验中自动学习并改进性能的能力,而不需要明确地编程。”
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
二、机器学习 vs. 传统编程
传统编程 | 机器学习 |
---|---|
人工定义规则(If...else...) | 自动从数据中学习规则 |
输入数据 + 程序 = 输出 | 输入数据 + 输出结果 = 学习程序 |
规则由程序员写死 | 规则通过模型训练获得 |
适用于规则明确的问题 | 适用于模式识别、预测、复杂任务 |
举个例子:
-
传统方式识别猫:程序员写规则,比如“有胡须”“耳朵三角形”...
-
机器学习识别猫:提供大量图片 + 标签(猫 / 非猫),模型自动学习区分特征。
三、机器学习的三大类型
1. 监督学习(Supervised Learning)
-
有“标签”的数据集(输入 + 输出)
-
模型学习输入和输出之间的映射关系
常见任务:
-
分类(识别垃圾邮件 vs 正常邮件)
-
回归(预测房价、股票价格)
示例:
输入:房子的面积、位置、楼层
输出:价格(已知)
模型:通过学习大量数据来预测新房子的价格
2. 无监督学习(Unsupervised Learning)
-
数据没有标签,模型需发现数据的结构和规律
常见任务:
-
聚类(群体划分,比如用户画像)
-
降维(如 PCA 用于数据可视化、压缩)
示例:
输入:客户的交易数据
目标:把客户自动分成不同群体(高消费、中消费、潜在用户)
3. 强化学习(Reinforcement Learning)
-
智能体通过在环境中“试错”,根据奖励反馈不断改进策略
常见任务:
-
游戏AI(如围棋、星际争霸)
-
自动驾驶、机器人导航
核心理念:
动作 → 环境反馈 → 奖励 → 改进策略
四、机器学习的核心流程
-
数据收集:获取大量高质量数据
-
数据预处理:清洗、归一化、特征选择等
-
选择模型:如决策树、SVM、神经网络等
-
训练模型:通过算法从训练数据中学习参数
-
评估模型:使用测试集验证模型性能
-
部署与应用:在真实场景中使用模型
-
持续优化:通过新数据不断迭代提升性能
五、常见机器学习算法
算法 | 应用领域 |
---|---|
线性回归(Linear Regression) | 连续值预测(房价、气温) |
逻辑回归(Logistic Regression) | 二分类问题(是否患病) |
决策树 / 随机森林 | 分类与回归 |
支持向量机(SVM) | 图像识别、文本分类 |
KNN(K-近邻) | 推荐系统、分类 |
K-Means | 聚类分析 |
主成分分析(PCA) | 降维与特征压缩 |
神经网络 / 深度学习 | 图像识别、语音识别、自然语言处理 |
六、机器学习常见应用场景
-
推荐系统(如抖音、淘宝、Netflix 推荐内容)
-
语音识别(如 Siri、微信语音转文字)
-
图像识别(人脸识别、安防监控)
-
自然语言处理(聊天机器人、情感分析)
-
金融风控(信用评分、欺诈检测)
-
医疗诊断(预测疾病、辅助诊断)
-
工业预测性维护(提前发现设备故障)
七、机器学习的工具和语言
-
编程语言:Python(主流)、R、Java(部分场景)
-
主流库:
-
scikit-learn(经典算法库)
-
TensorFlow、PyTorch(用于深度学习)
-
XGBoost、LightGBM(高效树模型)
-
总结一句话:
机器学习就是“用数据训练模型,让计算机自动发现规律,从而实现预测或分类”。
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】