计算机视觉怎么学习?CV入门学习路线

学习计算机视觉(Computer Vision)可以分为五个阶段:基础打底 → 工具掌握 → 深度学习视觉 → 项目实战 → 提升研究/就业能力。下面是详细路线图(适合本科/专科/转行人群):

计算机视觉入门学习路线:

🧱 第一步:打好基础(理论 + 编程)

数学基础(必须)

  • 线性代数(矩阵、特征值、SVD)👉 推荐《线性代数及其应用》(Gilbert Strang)

  • 概率论与统计(分布、贝叶斯、最大似然)👉 《概率论与数理统计》(浙大版)

  • 微积分(偏导、链式法则)👉 《Thomas Calculus》

编程基础

  • Python:核心语言,学会函数、类、Numpy、Pandas、Matplotlib

  • C++(选学):适合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值