学习计算机视觉(Computer Vision)可以分为五个阶段:基础打底 → 工具掌握 → 深度学习视觉 → 项目实战 → 提升研究/就业能力。下面是详细路线图(适合本科/专科/转行人群):
计算机视觉入门学习路线:
🧱 第一步:打好基础(理论 + 编程)
数学基础(必须)
-
线性代数(矩阵、特征值、SVD)👉 推荐《线性代数及其应用》(Gilbert Strang)
-
概率论与统计(分布、贝叶斯、最大似然)👉 《概率论与数理统计》(浙大版)
-
微积分(偏导、链式法则)👉 《Thomas Calculus》
编程基础
-
Python:核心语言,学会函数、类、Numpy、Pandas、Matplotlib
-
C++(选学):适合做嵌入式或工业视觉
🔧 第二步:掌握CV基本工具和经典方法(非深度学习)
学 OpenCV
-
图像读取与处理(灰度、滤波、边缘检测)
-
特征提取(SIFT、ORB、SURF)
-
图像变换(仿射、透视、几何校正)
👉 推荐项目:《图像拼接》《边缘检测》《目标跟踪》
🧠 第三步:学习深度学习 + 视觉模型(现代CV核心)
深度学习基础
-
神经网络基础:激活函数、反向传播、损失函数
-
框架:PyTorch(推荐)或 TensorFlow
计算机视觉核心模型
-
图像分类:CNN、ResNet
-
目标检测:Faster R-CNN、YOLOv5/8、SSD
-
图像分割:U-Net、Mask R-CNN
-
自监督 & Transformer:ViT、SAM(Segment Anything Model)
👉 推荐课程:
-
吴恩达深度学习课程(deeplearning.ai)
-
Stanford CS231n(计算机视觉权威公开课)
-
Fast.ai(上手实战快)
💼 第四步:项目实战积累(就业/考研必备)
自主项目(可以做的题目):
-
车牌识别系统(OCR)
-
人脸检测 + 打卡系统
-
医疗影像分类(肺炎、CT)
-
工业缺陷检测(电路板、焊点)
-
YOLO 目标检测部署(使用 Flask + ONNX)
比赛平台推荐:
-
天池大赛(阿里)
-
AI Studio(百度飞桨)
-
字节 ByteCamp、CVPR 学生竞赛
🎓 第五步:进阶方向(按目标分)
如果你要考研:
-
学术方向:三维视觉、SLAM、医疗影像、Transformer 等
-
多读论文(CVPR、ECCV、ICCV)、精通一两个经典算法(如YOLO)
如果你要找工作:
-
多刷 LeetCode + CV算法题(例如目标检测实现)
-
学会部署:ONNX、TensorRT、Flask、边缘部署(Jetson Nano、Raspberry Pi)
📘 推荐书籍/资料
资源 | 推荐内容 |
---|---|
《Computer Vision: A Modern Approach》 | 经典CV教材 |
《深度学习与计算机视觉》 by Adrian Rosebrock | 实用型 |
Stanford CS231n | 强烈推荐公开课,免费 |
PyImageSearch | 项目实战博客,适合入门到进阶 |
✅ 总结
计算机视觉是“理论 + 编程 +模型 + 项目”四位一体的学习路线。只学理论没项目,面试很难通过;只会调用模型不理解原理,也难进阶。
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面,获取方式见图。
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【大模型入门自学资料包】
【学术论文写作攻略工具】