计算机视觉怎么学习?CV入门学习路线

学习计算机视觉(Computer Vision)可以分为五个阶段:基础打底 → 工具掌握 → 深度学习视觉 → 项目实战 → 提升研究/就业能力。下面是详细路线图(适合本科/专科/转行人群):

计算机视觉入门学习路线:

🧱 第一步:打好基础(理论 + 编程)

数学基础(必须)

  • 线性代数(矩阵、特征值、SVD)👉 推荐《线性代数及其应用》(Gilbert Strang)

  • 概率论与统计(分布、贝叶斯、最大似然)👉 《概率论与数理统计》(浙大版)

  • 微积分(偏导、链式法则)👉 《Thomas Calculus》

编程基础

  • Python:核心语言,学会函数、类、Numpy、Pandas、Matplotlib

  • C++(选学):适合做嵌入式或工业视觉


🔧 第二步:掌握CV基本工具和经典方法(非深度学习)

学 OpenCV

  • 图像读取与处理(灰度、滤波、边缘检测)

  • 特征提取(SIFT、ORB、SURF)

  • 图像变换(仿射、透视、几何校正)
    👉 推荐项目:《图像拼接》《边缘检测》《目标跟踪》


🧠 第三步:学习深度学习 + 视觉模型(现代CV核心)

深度学习基础

  • 神经网络基础:激活函数、反向传播、损失函数

  • 框架:PyTorch(推荐)或 TensorFlow

计算机视觉核心模型

  • 图像分类:CNN、ResNet

  • 目标检测:Faster R-CNN、YOLOv5/8、SSD

  • 图像分割:U-Net、Mask R-CNN

  • 自监督 & Transformer:ViT、SAM(Segment Anything Model)

👉 推荐课程:

  • 吴恩达深度学习课程(deeplearning.ai)

  • Stanford CS231n(计算机视觉权威公开课)

  • Fast.ai(上手实战快)


💼 第四步:项目实战积累(就业/考研必备)

自主项目(可以做的题目):

  • 车牌识别系统(OCR)

  • 人脸检测 + 打卡系统

  • 医疗影像分类(肺炎、CT)

  • 工业缺陷检测(电路板、焊点)

  • YOLO 目标检测部署(使用 Flask + ONNX)

比赛平台推荐:

  • Kaggle

  • 天池大赛(阿里)

  • AI Studio(百度飞桨)

  • 字节 ByteCamp、CVPR 学生竞赛


🎓 第五步:进阶方向(按目标分)

如果你要考研:

  • 学术方向:三维视觉、SLAM、医疗影像、Transformer 等

  • 多读论文(CVPR、ECCV、ICCV)、精通一两个经典算法(如YOLO)

如果你要找工作:

  • 多刷 LeetCode + CV算法题(例如目标检测实现)

  • 学会部署:ONNX、TensorRT、Flask、边缘部署(Jetson Nano、Raspberry Pi)


📘 推荐书籍/资料

资源推荐内容
《Computer Vision: A Modern Approach》经典CV教材
《深度学习与计算机视觉》 by Adrian Rosebrock实用型
Stanford CS231n强烈推荐公开课,免费
PyImageSearch项目实战博客,适合入门到进阶


✅ 总结

计算机视觉是“理论 + 编程 +模型 + 项目”四位一体的学习路线。只学理论没项目,面试很难通过;只会调用模型不理解原理,也难进阶。

 免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面,获取方式见图。
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【大模型入门自学资料包】
【学术论文写作攻略工具】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值