2025年正式进入了大模型时代,许多人好奇传统机器学习算法还有必要学吗?有哪些算法值得学,我从两个角度给大家分析一下:
一是大模型时代下,学习传统机器学习算法对就业前景的影响;
二是这些算法在技术成长路径中的价值。同时,我会评估常见经典算法(如 SVM、决策树、KNN、朴素贝叶斯、随机森林、梯度提升树、聚类等)哪些仍然值得重点学习。
就业前景
尽管大模型(如 GPT、BERT 等)风头正劲,但企业生产中结构化数据分析和预测仍大量依赖传统机器学习方法。例如,Azure 机器学习平台依然支持回归、分类等传统任务组件,仅不会再新增新组件。实际招聘需求中也频频出现经典算法。例如,FinTech 公司 Gusto 在招聘中明确要求“使用逻辑回归、随机森林、XGBoost 或神经网络进行信用风险/欺诈风险建模”另一家数据岗位招聘则列出“逻辑回归、树模型(随机森林、XGBoost)”等技能要求nexusitgroup.com。这些例子表明,无论在金融风控、欺诈检测,还是推荐系统、市场分析等领域,逻辑回归、决策树/随机森林、梯度提升树等算法依然是常用工具。
行业调研和数据也支持这一点。数据显示,数据科学和分析师类职位需求仍在增长中:美国劳工统计局预计 2021–2031 年数据科学岗位增长率高达 36%。有分析指出,数据/业务分析师、机器学习工程师等角色持续高需求。在实际应用场景中,许多企业的结构化数据任务仍采用传统方法。例如零售和快消品行业大量使用机器学习算法对用户行为和运营数据做预测分析:FMCG 公司常用 ML 模型进行个性化推荐、价格优化、库存与供应链管理等。支持向量机、朴素贝叶斯、KNN 和聚类等方法也在客户分群、用户画像、异常检测等场景中发挥作用。总之,面对结构化数据和中小规模样本时,传统算法往往更加轻量且易于部署,市场对熟悉这些算法的专业人才依然有较大需求。
免费分享一套人工智能+大模型自学资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
技术成长
掌握传统算法对提升算法思维和数学基础极有帮助。首先,经典算法涉及大量统计学和优化思维,例如线性/逻辑回归背后的最小二乘与最大似然原理,支持向量机的核技巧,以及决策树的信息增益等概念,这些都是理解更复杂模型的基础。正如研究指出,“学习经典机器学习为理解大型语言模型等复杂系统提供了必要的基础知识”。其次,传统模型需要手动特征工程,从原始数据中提取有意义特征:指出经典模型常依赖专家设计的特征,这个过程虽然耗时但能加深对数据的理解。除此之外,经典算法广泛使用交叉验证和超参数调优来评估和优化模型性能,这一过程训练了工程师在有限数据下高效选模调参的能力。
可解释性是传统算法的一大优势。在许多金融、医疗等高风险场景中,可向业务方解释模型决策非常重要。比如决策树可以提供清晰的规则路径,逻辑回归可以通过系数说明特征影响力,满足法规合规要求。研究也指出,相较于“黑箱”式的深度模型,传统方法更易解释、更可靠。另外,在计算资源有限或需要实时决策的场合,传统模型通常更高效。例如将经典模型部署在嵌入式设备或边缘计算场景,能够在硬件受限条件下完成异常检测、预测维护等任务。
最后,从通用人工智能能力来看,学习传统算法培养的数学基础和算法思维对理解深度学习也大有裨益。掌握梯度下降、线性代数和概率统计等内容,可以更深入地理解神经网络的运作机制;熟悉经典模型的行为模式也便于日后调试和改进深度模型。因此,投资时间学习传统算法能为个人技术成长奠定坚实基础。
值得学习的经典机器学习算法
线性/逻辑回归:基础的回归与分类算法,具有明确的数学形式和可解释性,经常用作基线模型。它在销售预测、医疗诊断、客户流失预测、垃圾邮件分类等多领域得到广泛应用。
决策树:简单直观的划分模型,可处理分类与回归。决策树在信贷评分、电信用户流失预测、图像识别等场景中常用。其可视化决策路径有助于解释模型判断,业务部门易于理解。
随机森林:基于决策树的集成方法,通过多棵随机树投票降低过拟合。随机森林在金融(如股票/风险预测)、生物信息(基因分析)和推荐系统(电影或商品推荐)等领域应用广泛,一般能够提供稳健的高准确度结果。
梯度提升树(GBDT):如 XGBoost、LightGBM 等,是目前许多结构化数据竞赛和生产任务的首选算法,通过串联弱分类器持续减小误差。GBDT 在排名、预测和回归场景下表现优秀,并可灵活调整损失函数。
朴素贝叶斯:基于贝叶斯定理和特征条件独立假设的概率分类器,速度快、效果稳定。朴素贝叶斯在文本分类、情感分析、垃圾邮件检测等领域仍然有效,特别适合高维稀疏数据。
支持向量机(SVM):二分类与回归模型,通过最大化间隔实现分类,可引入核函数处理非线性问题。在样本量较小但特征空间复杂时常有好表现,可用于图像分类、文本分类、异常检测等。
K最近邻(KNN):基于样本相似度的非参数方法,简单易懂,无需训练阶段。适用于分类和回归问题,在数据量不大、特征维度适中的情况下可作为有效基线方法。
聚类算法:如 K-means、层次聚类、DBSCAN 等,用于发现数据内在分组。在客户分群、图像分割、文档聚类和异常检测等任务中非常有用。学习聚类算法可以加强对数据分布和相似度度量的理解。
降维与特征提取:如主成分分析(PCA)。PCA 等算法通过线性变换提取关键特征,用于数据可视化、降噪和加速后续建模,是数据预处理常用工具。
以上算法涵盖了监督/无监督、线性/非线性和基础/集成等多种类型。在当前大多数工业应用中,这些经典算法依然是分析结构化数据和构建可解释模型的重要工具,掌握它们有助于快速响应实际业务需求,也为进一步学习深度学习和大模型技术打下坚实基础。