导读:2022年7月30日下午,在由CSDN、OpenMPC社区联合主办,网络法前沿、网络法实务圈支持的“技术+法律”隐私计算如何助力数据合规公开课中,阿里研究院-数据经济研究中心傅宏宇分享了《隐私计算与数据要素市场建设》。
傅宏宇
阿里研究院-数据经济研究中心
《隐私计算与数据要素市场建设》
一
数据要素的特征和实现
数据要素化的目标就是让数据变得更有用,服务更多的人。数据要素化的发展拓展了我们获取信息的渠道,提升了数据生产力。
- 核心手段:通过数据向信息的转化,实现从物理世界向人类认知的投射
- 转化方式:通过信息进行预测和判断,对经济生产、社会生活产生实质性影响
- 独立价值:改变了传统的信息获取方式,得到了新的信息
数据要素化改善了数据获取的能力,提高了数据向信息转化的能力,这些都是技术实现的。数据要素经过三个阶段,从传统的数据分析到基于原始数据的商业智能BI,最后到结合算法和算力形成的数据智能DI,隐私计算技术在其间发挥了关键的作用。数据的应用场景由技术能力的总和决定,我们对数据的保护水平决定了数据能发挥出多大的作用。
数据要素化过程中也存在一些难点:
- 数据质量和要求不断提高:技术鲁棒受到持续挑战、数据断供影响精准决策
- 处理能力提升带来数据存储和计算成本增加:存储计算成本高企
- 技术负外部性溢出带来风险控制要求提升:分级分类对技术实现的挑战
从多主体视角可以看到数据的应用会影响到大量的组织单位,主要影响如下:
- 对政府:可复用于社会治理,公共数据的界定和政企数据合作
- 对用户:可复用于个人决策,个人信息可携,流通可控
- 对平台内企业:可复用于商业决策,商业决策工具跨场景使用
- 对平台外生态:可复用于竟争秩序,主动与被动的跨生态数据合作机制
现在的数据互联互通,承载了巨大的数据隐私风险,隐私计算可能是一个很好的解决方案。值得肯定的是,隐私计算技术在这样的场景下会发挥巨大的作用。
在构建数据要素流通机制的目标上,可以发现存在一些明显的问题,比如数据精确度会有一定损耗,处理数据的成本增加,成本问题是绝对不能忽略的,当成本的存在使得利益非常稀薄的时候,那么这个技术的发展就会非常困难,风险管理和责任追溯问题也一直存在。
二
隐私计算的技术特征和应用
MPC和TEE等有安全保障的技术是比较符合使用实际的,但是现在仍然存在一些障碍,比如隐私保护在什么程度上属于合规,法律暂时没有明确的回复,这对技术选型有很深的影响。
目前隐私计算有一定应用成效的、比较成熟的场景主要是金融联合反诈、医疗辅助等。
隐私计算合规的问题,主要需要注意三点:
- 数据最小化·:强调个人数据收集尽量克制,收集和使用目的保持一致
- 数据分级分类:敏感、重要的数据加强保护
- 数据匿名化:通过匿名化改变数据的颗粒度,减少被识别后给自然人带来的风险
三
隐私计算在数据要素市场建设中的作用
目前数据要素市场建设关注的问题主要有4个部分:
- 数据权属问题
- 数据流通利用问题
- 数据价值和分配问题
- 数据安全问题
在数据权益上,这是数据使用的关键问题,强调:
- 实现持有权、使用权分离的要求
- 解决各类主体权能拆分的法律困难
- 对数据来源进行有效追溯,确定相应的贡献度
在公共数据角度,这是我们国家现在高度关注的问题,如何发挥公共数据价值,界分公共数据等,隐私计算有望提供解决方案,主要关注点如下:
- 实现公共数据与其他类型数据的界分
- 构建公共数据内部共享的可信环境
- 提供公共数据开放的技术实现路径
- 形成政企数据合作的解决方案
数据价值的角度,效用度量问题现在比较模糊,隐私计算可以较好地解决。劳动这一点值得注意,怎么样的工作属于数据劳动,国家现在鼓励数据劳动者的出现。主要的作用如下:
- 从数据资源到数据资产到数据资本的技术实现与效用度量
- 解耦数据价值中的价值投入一一劳动与技术的关系
- 构建数据价值分配的技术实现手段
数据安全方面,涉及到整个数据的风险管控体系,整个过程中隐私计算都在发挥着作用,主要的应用方向如下:
- 风险管控体系:源头风险、过程风险、结果风险
- 对不同主体的风险影响和应对策略:用户、企业、国家
- 几大矛盾的平衡机制:安全与可用、质与量、保密性与透明度
隐私计算作为一种技术,是一种治理工具也是一种治理对象,技术治理的制度选择思路主要如下:
- 基本思路:包容审慎,穿透式监管
- 隐私计算的技术要求:可控、可靠、可用、可信
- 技术治理的方法论:敏捷治理
今天先和大家分享这么多内容,期待后续沟通。
附课件内容:
编辑整理:谢彪 重庆大学
关注 开放隐私计算公众号,了解更多内容。