Cheetah: 精简快速的安全两方DNN推理

Cheetah是一个两方计算(2PC)安全深度神经网络(DNN)推理系统,利用格的同态加密、不经意传输和秘密共享技术,实现了比CrypTFlow2更优的性能。它避免了昂贵的同态操作,优化了非线性函数的协议,并在ResNet50模型下实现了显著的计算和通信效率提升。Cheetah的开源代码已在GitHub上发布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整个卷积层的安全协议完整版如下图11.Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference

  • 摘要

  • 技术概览

  • 预备知识

    • 威胁模型

    • 符号约定

    • 基于格的同态加密

    • 不经意传输

  • 线性层的2PC协议

    • 全联接层(FC层)

    • 卷积层(CONV层)

    • 批标准化层(BN层)

  • 非线性函数的2PC优化协议

    • 百万富翁协议

    • 近似截断

  • 优化

    • 计算优化

    • 通信优化

  • 实验

  • 总结

  • 参考文献

摘要

2PC-NN安全推理与实际应用之间仍存在较大性能差距, 因此只适用于小数据集或简单模型. 本文通过仔细设计DNN, 基于格的同态加密、VOLE类型的不经意传输和秘密共享, 提出了一个2PC-NN推理系统Cheetah, 比CCS'20的CrypTFlow2技术开销小的多, 计算效率更快, 通信效率更高. 主要贡献有两点:

  • 基于格的同态加密的协议可在不进行任何昂贵同态rotation操作的情况下评估线性层;

  • 提出了非线性函数的几个精简且通信高效的原语.

本文的方案在ResNet50神经网络下在WAN进行端到端安全推理需要不到2.5分钟和2.3G通信量, 分别优于CrypTFlow2约5.6倍和12.9倍.

具体代码已在Github开源: 

https://github.com/Alibaba-Gemini-Lab/OpenCheetah.

技术概览

Cheetah与最先进的2PC协议复杂度比较如表1.

 

预备知识

威胁模型

Cheetah是半诚实两方计算设定下构造的. 两方分别为Alice(作为Server)和Bob(作为Client). 在安全推理中, Alice持有DNN, Bob持有神经网络的输入, 如图像. 协议允许Bob获得神经网络架构信息和推理输出, 而Alice根据应用场景的不同要么没有输出, 要么得到安全推理结果.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值