整个卷积层的安全协议完整版如下图11.Cheetah: Lean and Fast Secure Two-Party Deep Neural Network Inference
-
摘要
-
技术概览
-
预备知识
-
威胁模型
-
符号约定
-
基于格的同态加密
-
不经意传输
-
-
线性层的2PC协议
-
全联接层(FC层)
-
卷积层(CONV层)
-
批标准化层(BN层)
-
-
非线性函数的2PC优化协议
-
百万富翁协议
-
近似截断
-
-
优化
-
计算优化
-
通信优化
-
-
实验
-
总结
-
参考文献
摘要
2PC-NN安全推理与实际应用之间仍存在较大性能差距, 因此只适用于小数据集或简单模型. 本文通过仔细设计DNN, 基于格的同态加密、VOLE类型的不经意传输和秘密共享, 提出了一个2PC-NN推理系统Cheetah, 比CCS'20的CrypTFlow2技术开销小的多, 计算效率更快, 通信效率更高. 主要贡献有两点:
-
基于格的同态加密的协议可在不进行任何昂贵同态rotation操作的情况下评估线性层;
-
提出了非线性函数的几个精简且通信高效的原语.
本文的方案在ResNet50神经网络下在WAN进行端到端安全推理需要不到2.5分钟和2.3G通信量, 分别优于CrypTFlow2约5.6倍和12.9倍.
具体代码已在Github开源:
https://github.com/Alibaba-Gemini-Lab/OpenCheetah.
技术概览
Cheetah与最先进的2PC协议复杂度比较如表1.
预备知识
威胁模型
Cheetah是半诚实两方计算设定下构造的. 两方分别为Alice(作为Server)和Bob(作为Client). 在安全推理中, Alice持有DNN, Bob持有神经网络的输入, 如图像. 协议允许Bob获得神经网络架构信息和推理输出, 而Alice根据应用场景的不同要么没有输出, 要么得到安全推理结果.