算法入门(二):排序算法(中)

排序算法(中)

快速排序

我很喜欢把它称作哨兵排序:找到一个基准数,然后把数组划分成更小的数组。

快速排序的核心操作是“哨兵划分”,其目标是:选择数组中的某个元素作为“基准数”,将所有小于基准数的元素移到其左侧,而大于基准数的元素移到其右侧。

  1. 选取数组最左端元素作为基准数,初始化两个指针 ij 分别指向数组的两端。
  2. 设置一个循环,在每轮中使用 ij)分别寻找第一个比基准数大(小)的元素,然后交换这两个元素。
  3. 循环执行步骤 2. ,直到 ij 相遇时停止,最后将基准数交换至两个子数组的分界线。

快速排序的整体流程如下图所示。

  1. 首先,对原数组执行一次“哨兵划分”,得到未排序的左子数组和右子数组。
  2. 然后,对左子数组和右子数组分别递归执行“哨兵划分”。
  3. 持续递归,直至子数组长度为 1 时终止,从而完成整个数组的排序。
/* 元素交换 */
void swap(vector<int> &nums, int i, int j) {
    int tmp = nums[i];
    nums[i] = nums[j];
    nums[j] = tmp;
}

/* 哨兵划分 */
int partition(vector<int> &nums, int left, int right) {
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left])
            j--; // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left); // 将基准数交换至两子数组的分界线
    return i;            // 返回基准数的索引
}

/* 快速排序 */
void quickSort(vector<int> &nums, int left, int right) {
    // 子数组长度为 1 时终止递归
    if (left >= right)
        return;
    // 哨兵划分
    int pivot = partition(nums, left, right);
    // 递归左子数组、右子数组
    quickSort(nums, left, pivot - 1);
    quickSort(nums, pivot + 1, right);
}
  • 时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)、自适应排序:在平均情况下,哨兵划分的递归层数为 log ⁡ n \log n logn ,每层中的总循环数为 n n n ,总体使用 O ( n log ⁡ n ) O(n \log n) O(nlogn) 时间。在最差情况下,每轮哨兵划分操作都将长度为 n n n 的数组划分为长度为 0 0 0 n − 1 n - 1 n1 的两个子数组,此时递归层数达到 n n n 层,每层中的循环数为 n n n ,总体使用 O ( n 2 ) O(n^2) O(n2) 时间。
  • 空间复杂度 O ( n ) O(n) O(n)、原地排序:在输入数组完全倒序的情况下,达到最差递归深度 n n n ,使用 O ( n ) O(n) O(n) 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
  • 非稳定排序:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。

运行时间为: Function took 0.017375 seconds to execute.

前十个数字为: 3 5 6 9 9 10 11 11 12 12

**快排为什么快? **

从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与“归并排序”和“堆排序”相同,但通常快速排序的效率更高,主要有以下原因。

  • 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 O ( n 2 ) O(n^2) O(n2) ,没有归并排序稳定,但在绝大多数情况下,快速排序能在 O ( n log ⁡ n ) O(n \log n) O(nlogn) 的时间复杂度下运行。
  • 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。
  • 复杂度的常数系数低:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与“插入排序”比“冒泡排序”更快的原因类似。

**基准数优化 **

快速排序在某些输入下的时间效率可能降低。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为 n − 1 n - 1 n1、右子数组长度为 0 0 0 。如此递归下去,每轮哨兵划分后的右子数组长度都为 0 0 0 ,分治策略失效,快速排序退化为“冒泡排序”。

为了尽量避免这种情况发生,我们可以优化哨兵划分中的基准数的选取策略。例如,我们可以随机选取一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。

需要注意的是,编程语言通常生成的是“伪随机数”。如果我们针对伪随机数序列构建一个特定的测试样例,那么快速排序的效率仍然可能劣化。

为了进一步改进,我们可以在数组中选取三个候选元素(通常为数组的首、尾、中点元素),并将这三个候选元素的中位数作为基准数。这样一来,基准数“既不太小也不太大”的概率将大幅提升。当然,我们还可以选取更多候选元素,以进一步提高算法的稳健性。采用这种方法后,时间复杂度劣化至 O ( n 2 ) O(n^2) O(n2) 的概率大大降低。

/* 选取三个元素的中位数 */
int medianThree(vector<int> &nums, int left, int mid, int right) {
    // 此处使用异或运算来简化代码
    // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
    if ((nums[left] < nums[mid]) ^ (nums[left] < nums[right]))
        return left;
    else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right]))
        return mid;
    else
        return right;
}

/* 哨兵划分(三数取中值) */
int partition(vector<int> &nums, int left, int right) {
    // 选取三个候选元素的中位数
    int med = medianThree(nums, left, (left + right) / 2, right);
    // 将中位数交换至数组最左端
    swap(nums, left, med);
    // 以 nums[left] 作为基准数
    int i = left, j = right;
    while (i < j) {
        while (i < j && nums[j] >= nums[left])
            j--; // 从右向左找首个小于基准数的元素
        while (i < j && nums[i] <= nums[left])
            i++;          // 从左向右找首个大于基准数的元素
        swap(nums, i, j); // 交换这两个元素
    }
    swap(nums, i, left); // 将基准数交换至两子数组的分界线
    return i;            // 返回基准数的索引
}

运行时间为: Function took 0.0163827 seconds to execute.

前十个数字为: 3 5 6 9 9 10 11 11 12 12

可以看到快一些。如果数组极端一些的话差别更大。

尾递归优化

在某些输入下,快速排序可能占用空间较多。以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 0 0 0 ,递归树的高度会达到 n − 1 n - 1 n1 ,此时需要占用 O ( n ) O(n) O(n) 大小的栈帧空间。

为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,仅对较短的子数组进行递归。由于较短子数组的长度不会超过 n / 2 n / 2 n/2 ,因此这种方法能确保递归深度不超过 log ⁡ n \log n logn ,从而将最差空间复杂度优化至 O ( log ⁡ n ) O(\log n) O(logn)

/* 快速排序(尾递归优化) */
void quickSort(vector<int> &nums, int left, int right) {
    // 子数组长度为 1 时终止
    while (left < right) {
        // 哨兵划分操作
        int pivot = partition(nums, left, right);
        // 对两个子数组中较短的那个执行快排
        if (pivot - left < right - pivot) {
            quickSort(nums, left, pivot - 1); // 递归排序左子数组
            left = pivot + 1;                 // 剩余未排序区间为 [pivot + 1, right]
        } else {
            quickSort(nums, pivot + 1, right); // 递归排序右子数组
            right = pivot - 1;                 // 剩余未排序区间为 [left, pivot - 1]
        }
    }
}

归并排序

「归并排序 merge sort」是一种基于分治策略的排序算法,包含下图所示的“划分”和“合并”阶段。

  1. 划分阶段:通过递归不断地将数组从中点处分开,将长数组的排序问题转换为短数组的排序问题。
  2. 合并阶段:当子数组长度为 1 时终止划分,开始合并,持续地将左右两个较短的有序数组合并为一个较长的有序数组,直至结束。
/* 合并左子数组和右子数组 */
void merge(vector<int> &nums, int left, int mid, int right) {
    // 左子数组区间 [left, mid], 右子数组区间 [mid+1, right]
    // 创建一个临时数组 tmp ,用于存放合并后的结果
    vector<int> tmp(right - left + 1);
    // 初始化左子数组和右子数组的起始索引
    int i = left, j = mid + 1, k = 0;
    // 当左右子数组都还有元素时,比较并将较小的元素复制到临时数组中
    while (i <= mid && j <= right) {
        if (nums[i] <= nums[j])
            tmp[k++] = nums[i++];
        else
            tmp[k++] = nums[j++];
    }
    // 将左子数组和右子数组的剩余元素复制到临时数组中
    while (i <= mid) {
        tmp[k++] = nums[i++];
    }
    while (j <= right) {
        tmp[k++] = nums[j++];
    }
    // 将临时数组 tmp 中的元素复制回原数组 nums 的对应区间
    for (k = 0; k < tmp.size(); k++) {
        nums[left + k] = tmp[k];
    }
}

/* 归并排序 */
void mergeSort(vector<int> &nums, int left, int right) {
    // 终止条件
    if (left >= right)
        return; // 当子数组长度为 1 时终止递归
    // 划分阶段
    int mid = (left + right) / 2;    // 计算中点
    mergeSort(nums, left, mid);      // 递归左子数组
    mergeSort(nums, mid + 1, right); // 递归右子数组
    // 合并阶段
    merge(nums, left, mid, right);
}
  • 时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)、非自适应排序:划分产生高度为 log ⁡ n \log n logn 的递归树,每层合并的总操作数量为 n n n ,因此总体时间复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)
  • 空间复杂度 O ( n ) O(n) O(n)、非原地排序:递归深度为 log ⁡ n \log n logn ,使用 O ( log ⁡ n ) O(\log n) O(logn) 大小的栈帧空间。合并操作需要借助辅助数组实现,使用 O ( n ) O(n) O(n) 大小的额外空间。
  • 稳定排序:在合并过程中,相等元素的次序保持不变。

运行时间为: Function took 0.0551103 seconds to execute.

前十个数字为: 3 5 6 9 9 10 11 11 12 12

**链表排序 **

对于链表,归并排序相较于其他排序算法具有显著优势,可以将链表排序任务的空间复杂度优化至 O ( 1 ) O(1) O(1)

  • 划分阶段:可以通过使用“迭代”替代“递归”来实现链表划分工作,从而省去递归使用的栈帧空间。
  • 合并阶段:在链表中,节点增删操作仅需改变引用(指针)即可实现,因此合并阶段(将两个短有序链表合并为一个长有序链表)无须创建额外链表。

堆排序

设数组的长度为 n n n ,堆排序的流程如下图所示。

  1. 输入数组并建立大顶堆。完成后,最大元素位于堆顶。
  2. 将堆顶元素(第一个元素)与堆底元素(最后一个元素)交换。完成交换后,堆的长度减 1 1 1 ,已排序元素数量加 1 1 1
  3. 从堆顶元素开始,从顶到底执行堆化操作(Sift Down)。完成堆化后,堆的性质得到修复。
  4. 循环执行第 2.3. 步。循环 n − 1 n - 1 n1 轮后,即可完成数组排序。
/* 堆的长度为 n ,从节点 i 开始,从顶至底堆化 */
void siftDown(vector<int> &nums, int n, int i) {
    while (true) {
        // 判断节点 i, l, r 中值最大的节点,记为 ma
        int l = 2 * i + 1;
        int r = 2 * i + 2;
        int ma = i;
        if (l < n && nums[l] > nums[ma])
            ma = l;
        if (r < n && nums[r] > nums[ma])
            ma = r;
        // 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if (ma == i) {
            break;
        }
        // 交换两节点
        swap(nums[i], nums[ma]);
        // 循环向下堆化
        i = ma;
    }
}

/* 堆排序 */
void heapSort(vector<int> &nums) {
    // 建堆操作:堆化除叶节点以外的其他所有节点
    for (int i = nums.size() / 2 - 1; i >= 0; --i) {
        siftDown(nums, nums.size(), i);
    }
    // 从堆中提取最大元素,循环 n-1 轮
    for (int i = nums.size() - 1; i > 0; --i) {
        // 交换根节点与最右叶节点(即交换首元素与尾元素)
        swap(nums[0], nums[i]);
        // 以根节点为起点,从顶至底进行堆化
        siftDown(nums, i, 0);
    }
}

运行时间为: Function took 0.0240125 seconds to execute.

前十个数字为: 3 5 6 9 9 10 11 11 12 12

  • 时间复杂度 O ( n log ⁡ n ) O(n \log n) O(nlogn)、非自适应排序:建堆操作使用 O ( n ) O(n) O(n) 时间。从堆中提取最大元素的时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn) ,共循环 n − 1 n - 1 n1 轮。
  • 空间复杂度 O ( 1 ) O(1) O(1)、原地排序:几个指针变量使用 O ( 1 ) O(1) O(1) 空间。元素交换和堆化操作都是在原数组上进行的。
  • 非稳定排序:在交换堆顶元素和堆底元素时,相等元素的相对位置可能发生变化。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值