题目描述
C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市。任意两个
城市之间最多只有一条道路直接相连。这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为 1 条。
C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价
格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。
商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。设 C 国 n 个城市的标号从 1~ n,阿龙决定从 1 号城市出发,并最终在 n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有 n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品――水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来 C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有 5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路为单向通行,双向箭头表示这条道路为双向通行。
假设 1~n 号城市的水晶球价格分别为 4,3,5,6,1。
阿龙可以选择如下一条线路:1->2->3->5,并在 2 号城市以 3 的价格买入水晶球,在 3号城市以 5 的价格卖出水晶球,赚取的旅费数为 2。
阿龙也可以选择如下一条线路 1->4->5->4->5,并在第 1 次到达 5 号城市时以 1 的价格买入水晶球,在第 2 次到达 4 号城市时以 6 的价格卖出水晶球,赚取的旅费数为 5。
现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号
以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
【题目分析】
SPFA
【代码】
#include <cstdio>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m,a[100001];
int h[2000001],to[2000001],ne[2000001],en=0;
int minn[1000001],maxx[1000001],inq[1000001];
inline void add(int a,int b)
{
to[en]=b;
ne[en]=h[a];
h[a]=en++;
}
void SPFA1()
{
queue<int>q;
while (!q.empty()) q.pop();
q.push(1);
memset(minn,0x3f,sizeof minn);
minn[1]=a[1];inq[1]=1;
while (!q.empty())
{
int x=q.front();q.pop();inq[x]=0;
for (int i=h[x];i>=0;i=ne[i])
if (!(i&1)){
if (minn[to[i]]>min(a[to[i]],minn[x]))
{
minn[to[i]]=min(a[to[i]],minn[x]);
if (!inq[to[i]])
{
q.push(to[i]);
inq[to[i]]=1;
}
}
}
}
}
void SPFA2()
{
queue<int>q;
while (!q.empty()) q.pop();
q.push(n);
// memset(minn,0x3f,sizeof minn);
maxx[n]=a[n];inq[n]=1;
while (!q.empty())
{
int x=q.front();q.pop();inq[x]=0;
for (int i=h[x];i>=0;i=ne[i])
if ((i&1)==1){
if (maxx[to[i]]<max(a[to[i]],maxx[x]))
{
maxx[to[i]]=max(a[to[i]],maxx[x]);
if (!inq[to[i]])
{
q.push(to[i]);
inq[to[i]]=1;
}
}
}
}
}
int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i) scanf("%d",&a[i]);
for (int i=1;i<=m;++i)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b); add(b,a);
if (c==2) add(b,a),add(a,b);
}
SPFA1();
SPFA2();
// for (int i=1;i<=n;++i) printf("%d ",minn[i]); printf("\n");
// for (int i=1;i<=n;++i) printf("%d ",maxx[i]); printf("\n");
int ans=0;
for (int i=1;i<=n;++i) ans=max(ans,maxx[i]-minn[i]);
printf("%d\n",ans);
}