题目大意:有一个N圈的跑道,跑道里有L段路,每次跑过一段路加速器增加20%的能量,当有我们有一个加速卡时,可以使用加速,我们最多可以积攒两个加速卡,问跑完N圈的最小时间是多少。
题目分析:首先我们可以把它按照DP求解:dp[i][j]表示走完前L段路,积累了J个20%能量所消耗的最小时间。其中只要注意一些小细节的处理。
当j=10时,它也可能是有j=14转移过来的(因为我们最多只能保存两个加速卡)。
当j+5<15时,可以由加速得到。
如下代码(附有注释):
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define MAXN 100100
using namespace std;
typedef long long LL;
LL dp[MAXN][15],a[MAXN],b[MAXN];
int n,l;
int main()
{
while(scanf("%d%d",&l,&n)!=EOF)
{
for(int i=1;i<=l;i++)
cin>>a[i];
for(int i=1;i<=l;i++)
cin>>b[i];
for(int i=l+1;i<=l*n;i++)
{
a[i]=a[i-l];//对每一个l圈进行计算
b[i]=b[i-l];
}
for(int i=1;i<15;i++)
dp[0][i]=MAXN;//初始化
dp[0][0]=0;
for(int i=1;i<=l*n;i++)
{
for(int j=0;j<15;j++)
{
if(j==0)//如果为零则一点是加速过
dp[i][j]=dp[i-1][j+5]+b[i];
else
{
dp[i][j]=dp[i-1][j-1]+a[i];//假定没有加速
if(j==10)
dp[i][j]=min(dp[i][j],dp[i-1][14]+a[i]);//注意小细节
if(j+5<15)
dp[i][j]=min(dp[i][j],dp[i-1][j+5]+b[i]);
}
}
}
LL ans=dp[l*n][0];
for(int i=1;i<15;i++)
ans=min(ans,dp[l*n][i]);
cout<<ans<<endl;
}
//while(1);
return 0;
}