poj 3661 Running DP

题目大意:

N分钟,小刚每分钟可以选择是停下休息还是往前走,如果选择往前走的话可以在第i分钟走Di,当然,小刚的疲劳值也会增加1。如果选择休息则小刚的疲劳值会每分钟减小1,当小刚停下来以后,小刚只能在疲劳值降到0时才能继续再走。已知小刚的疲劳值最多不能超过M,当小刚度过N分钟后要保证他的疲劳值为0,问小刚最多能走多长的距离。

题目分析:

是个很明显的动态规划问题:

dp[i][j]表示第i分钟,j点疲劳的状态下行走的最长路程,答案是dp[ n ][ 0 ];

注意初始化。

dp[ i ] [ 0 ]=dp [i-1][ 0 ] ;第i秒还是在休息。

注意一句话:小刚只能在疲劳值降到零的时候才能继续再走。

所以条件转移方程

dp[i][j] = dp[i-1][j-1] + d[i];

代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#define N 11000
using namespace std;
int n,m,d[N],dp[N][N];
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
       scanf("%d",&d[i]);
    for(int i=1;i<=n;i++)
    {
        dp[i][0]=dp[i-1][0];
        for(int j=1;j<=m;j++)
        {
            if(i-j>0)
                dp[i][0]=max(dp[i][0],dp[i-j][j]);
            dp[i][j]=dp[i-1][j-1]+d[i];

        }    
    }
    printf("%d\n",dp[n][0]);
    //while(1);
    return 0; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值