题目大意:
N分钟,小刚每分钟可以选择是停下休息还是往前走,如果选择往前走的话可以在第i分钟走Di,当然,小刚的疲劳值也会增加1。如果选择休息则小刚的疲劳值会每分钟减小1,当小刚停下来以后,小刚只能在疲劳值降到0时才能继续再走。已知小刚的疲劳值最多不能超过M,当小刚度过N分钟后要保证他的疲劳值为0,问小刚最多能走多长的距离。
题目分析:
是个很明显的动态规划问题:
dp[i][j]表示第i分钟,j点疲劳的状态下行走的最长路程,答案是dp[ n ][ 0 ];
注意初始化。
dp[ i ] [ 0 ]=dp [i-1][ 0 ] ;第i秒还是在休息。
注意一句话:小刚只能在疲劳值降到零的时候才能继续再走。
所以条件转移方程
dp[i][j] = dp[i-1][j-1] + d[i];
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 11000
using namespace std;
int n,m,d[N],dp[N][N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&d[i]);
for(int i=1;i<=n;i++)
{
dp[i][0]=dp[i-1][0];
for(int j=1;j<=m;j++)
{
if(i-j>0)
dp[i][0]=max(dp[i][0],dp[i-j][j]);
dp[i][j]=dp[i-1][j-1]+d[i];
}
}
printf("%d\n",dp[n][0]);
//while(1);
return 0;
}