2017阿里技术年度精选.pdf
这套精选集覆盖多个热门技术领域:算法、机器学习、大数据、数据库、中间件、运维、安全、移动开发等,文章内容涉及技术架构、核心算法、解决方案等干货。无论你是计算机相关专业的在校学生、科研机构的 研究人员,还是步入社会的IT从业人员,相信都能从中受益。
这套书同时收录了十多位阿里技术人的访谈:从工程师到合伙人的多隆,6年时间影响数亿用户的靖世,入选MIT2017年度TR35的王刚&吴翰清,免试晋升为研究员的钱磊等,将为你展现不一样的技术人生。
它不是一本系统讲述某个领域的书,更像是一本技术杂文选集,内容五花八门。翻开书来,一眼望去,皆是散落在各个技术领域的结晶。你可以 把它当作床头书,或是在旅行的路上随手翻翻,充充电。希望这本书,能为 你打开一扇窗,去看更大的世界;成为一个小支点,帮你撬动更大的进步。
Trufan教程(UML2.x).pdf
目录
第一章 理解面向对象...................................................................................................................... 3
第一节 对象........................................................................................................................ 4
第二节 类............................................................................................................................ 4
第三节 封装........................................................................................................................ 5
第四节 继承........................................................................................................................ 5
第五节 消息........................................................................................................................ 6
第六节 结构........................................................................................................................ 6
第七节 多态........................................................................................................................ 7
第八节 永久对象................................................................................................................ 7
第九节 主动对象................................................................................................................ 8
第十节 小结........................................................................................................................ 8
第十一节 习题.................................................................................................................... 8
第二章 UML 入门............................................................................................................................ 8
第一节 UML 的发展历史.................................................................................................. 8
第二节 UML 介绍.............................................................................................................. 9
第三节 小结...................................................................................................................... 12
第四节 习题...................................................................................................................... 12
第三章 从需求开始........................................................................................................................ 13
第一节 系统描述.............................................................................................................. 13
第二节 企业高层需求......................................................................................................14
第三节 系统功能.............................................................................................................. 14
第四节 用活动图描述业务流程......................................................................................17
第五节 系统性能.............................................................................................................. 32
第六节 建模过程.............................................................................................................. 32
第七节 小结...................................................................................................................... 33
第八节 习题...................................................................................................................... 33
第四章 建立用例模型.................................................................................................................... 34
第一节 用例模型概述......................................................................................................34
第二节 系统用例模型......................................................................................................37
第三节 业务用例模型......................................................................................................43
第四节 用例描述文档规范..............................................................................................48
第五节 小结...................................................................................................................... 51
第六节 习题...................................................................................................................... 52
第五章 创建类图............................................................................................................................ 53
第一节 定义类.................................................................................................................. 53
第二节 定义类的属性......................................................................................................57
第三节 定义类的操作......................................................................................................60
第四节 会议管理类图......................................................................................................63
第五节 操作步骤.............................................................................................................. 63
第六节 车辆管理系统类图..............................................................................................66
第八节 小结...................................................................................................................... 67
第九节 习题...................................................................................................................... 67
第六章 定义类之间的关系............................................................................................................ 69
西安楚凡科技(Trufun)有限公司 打造中国人自己的 UML 建模工具
Trufun 精品 UML 内训课程:UML 从入门到精通 UML 与 OOAD TUP 全程实训 3
第一节 关系...................................................................................................................... 69
第二节 关联...................................................................................................................... 70
第三节 聚合和组合.......................................................................................................... 72
第四节 泛化...................................................................................................................... 73
第五节 依赖性.................................................................................................................. 76
第六节 会议管理中的类关系图......................................................................................77
第七节 车辆管理中的类关系图......................................................................................79
第八节 操作步骤.............................................................................................................. 79
第九节 小结...................................................................................................................... 84
第十节 习题...................................................................................................................... 84
第七章 对象交互............................................................................................................................ 85
第一节 健壮性分析.......................................................................................................... 85
第二节 顺序图................................................................................................................ 101
第三节 通信图................................................................................................................ 115
第四节 顺序图和通信图的区别....................................................................................120
第五节 小结.................................................................................................................... 120
第六节 习题.................................................................................................................... 120
第八章 对象行为.......................................................................................................................... 121
第一节 状态图................................................................................................................ 121
第二节 小结.................................................................................................................... 132
第三节 习题.................................................................................................................... 132
第九章 系统实现.......................................................................................................................... 132
第一节 组件图................................................................................................................ 133
第二节 部署图................................................................................................................ 139
第三节 小结.................................................................................................................... 145
第四节 习题.................................................................................................................... 145
第十章 TUP(Trufun 统一过程)简介...................................................................................... 145
第一节 UML 建模与软件开发过程模型............................................................................145
第二节 TUP 的定义..............................................................................................................146
第三节 TUP 的目标..............................................................................................................147
第四节 TUP 的结构....................................................................................................... 148
第五节 TUP 的阶段....................................................................................................... 149
第六节 小结.......................................................................................................................... 151
第七节 习题.......................................................................................................................... 152
第十一章 关于楚凡科技.............................................................................................................. 152
版权所有................................................................................................................................ 152
【全球AI 影响力 TOP 100 】最具影响力AI 人物、公司品牌和出版物
Onalytica 是入选 CB Insights 最佳 AI 初创公司 TOP 100 的企业之一,致力于用先进的算法和数据提供 AI 服务。日前,该公司使用其影响力分析软件 Influencer Relationship Management,统计了从今年年初到 5 月 18 日在英文社交领域最具影响力的 AI 人物、公司品牌以及最受关注的出版物。
人工智能,或者说 AI,是组成我们真实世界的一部分,也是科学和商业关注的重要枢纽。企业正在大肆投资,从事人工智能或将人工智能纳入其业务。AI 是令人着迷的技术,为企业提供了新的选择,从安全防御到预测消费者的购买意向。
过去 5 年来,科技巨头纷纷采取重大举措,争相获取 AI 竞争力,包括 Microsoft Ventures 建立 AI 创业基金,以及 Uber 收购 AI 创业公司 Geometric Intelligence;苹果在 2016 年 12 月收购了 Emotient,谷歌在 2014 年以 4 亿美元的金额收购了 DeepMind,IBM 与英伟达合作,为 IBM 认知系统 Watson 提供更快的认知服务。
boost_1_59_0.tar.gz
CMake Error at cmake/boost.cmake:81 (MESSAGE):
You can download it with -DDOWNLOAD_BOOST=1 -DWITH_BOOST=
This CMake script will look for boost in . If it is not there,
it will download and unpack it (in that directory) for you.
If you are inside a firewall, you may need to use an http proxy:
export http_proxy=http://example.com:80
Call Stack (most recent call first):
cmake/boost.cmake:269 (COULD_NOT_FIND_BOOST)
CMakeLists.txt:460 (INCLUDE)
-- Configuring incomplete, errors occurred!
See also "/opt/mysql-5.7.18/CMakeFiles/CMakeOutput.log".
See also "/opt/mysql-5.7.18/CMakeFiles/CMakeError.log".
源码安装最新版MySQL时,使用cmake编译报错,提示需要这个工具,这个工具下载很慢,于是上传至CSDN以提高下载速度。
下载 阿里巴巴Java开发手册v1.2.0.pdf 完整版高清
这是一个广义的编码规范,一本随时可以查阅的技术参考,你在手册中可以找到很多的技术规范、最佳实践,避坑指南,是每一位优秀开发者手里的必备好书。
机器学习导论(Introduction to Machine Learning By Nils Nilsson ).pdf
机器学习导论(Introduction to Machine Learning) - By Nils Nilsson
http://ai.stanford.edu/~nilsson/mlbook.html
机器学习导论(Introduction to Machine Learning).pdf
机器学习导论(Introduction to Machine Learning) by Amnon Shashua,Cornell University
https://arxiv.org/abs/0904.3664v1
机器学习课程(A Course in Machine Learning).pdf
机器学习课程(A Course in Machine Learning) by Hal Daumé III
http://ciml.info/
统计学习元素(The Elements of Statistical Learning).pdf
统计学习元素(The Elements of Statistical Learning) by Trevor Hastie, Robert Tibshirani, Jerome Friedman
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
信息理论、推理和学习算法(Information Theory, Inference, and Learning Algorithms).pdf
信息理论、推理和学习算法(Information Theory, Inference, and Learning Algorithms) by David J.C. MacKay
http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html
机器学习的高斯过程(Gaussian Processes for Machine Learning).pdf
机器学习的高斯过程(Gaussian Processes for Machine Learning) by Carl Edward Rasmussen and Christopher K. I. Williams,The MIT Press
http://www.gaussianprocess.org/gpml/
贝叶斯推理和机器学习(Bayesian Reasoning and Machine Learning).pdf
贝叶斯推理和机器学习(Bayesian Reasoning and Machine Learning) by David Barber
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.Online
机器学习神经网络和统计分类.pdf
机器学习、神经网络和统计分类(Machine Learning, Neural Networks, and Statistical Classification) by
D. Michie, D.J. Spiegelhalter, C.C. Taylor
http://www1.maths.leeds.ac.uk/~charles/statlog/
神经网络和深度学习(Neural Networks and Deep Learning).pdf
神经网络和深度学习(Neural Networks and Deep Learning) by Michael Niels
神经网络和统计学习(Neural networks and statistical learning).pdf
神经网络和统计学习(Neural networks and statistical learning) by K.-L. Du and M.N.s. Swamy
《Deep Learning》中文版.pdf
《Deep Learning》中文版(印前版)正式发布。这本书适合于各类读者,尤其是学习机器学习的本科或研究生、深度学习和人工智能的研究者、或没有机器学习与统计背景的软件工程师。 《Deep Learning》这本书是由学界领军人物 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合力打造,特斯拉的 CEO 马斯克曾经评价道:《Deep Learning》由领域内三位专家合著,是该领域内唯一的综合性书籍。
这本书的主题具体来说,是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千世界表示为嵌套的层次概念体系(由较简单概念间的联系定义复杂概念、从一般抽象概括到高级抽象表示)。对于本书的结构,第一部分介绍基本的数学工具和机器学习的概念,第二部分介绍最成熟的深度学习算法,而第三部分讨论某些具有展望性的想法,它们被广泛地认为是深度学习未来的研究重点。
因此,本书从基础数学知识到各类深度方法全面而又深入地描述了深度 学习的各个主题。译者们也相信开源此书 PDF 版的中文译文可以促进大家对深度学习的基 础和前沿知识有进一步的理解,也相信通过开放高质量的专业书籍能做到先阅读后付费。
《深度学习》中文版.pdf
《Deep Learning》中文版(印前版)正式发布。这本书适合于各类读者,尤其是学习机器学习的本科或研究生、深度学习和人工智能的研究者、或没有机器学习与统计背景的软件工程师。
《Deep Learning》这本书是由学界领军人物 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合力打造,特斯拉的 CEO 马斯克曾经评价道:「《Deep Learning》由领域内三位专家合著,是该领域内唯一的综合性书籍。」
这本书的主题具体来说,是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千世界表示为嵌套的层次概念体系(由较简单概念间的联系定义复杂概念、从一般抽象概括到高级抽象表示)。对于本书的结构,第一部分介绍基本的数学工具和机器学习的概念,第二部分介绍最成熟的深度学习算法,而第三部分讨论某些具有展望性的想法,它们被广泛地认为是深度学习未来的研究重点。
因此,本书从基础数学知识到各类深度方法全面而又深入地描述了深度学习的各个主题。译者们也相信开源此书 PDF 版的中文译文可以促进大家对深度学习的基础和前沿知识有进一步的理解,也相信通过开放高质量的专业书籍能做到先阅读后付费。
阿里巴巴技术实战2016年刊.pdf
由阿里云云栖社区出品的《云栖精选阿里巴巴技术实战2016年刊》提炼了云栖社区2016一整年来积累的精华,这里有2016阿里云的大事记,有从2009年到现在已经举办过8届的云栖大会的变迁,也有60+技术选题背后的故事。
百大论文.doc
这是近5年100篇被引用次数最多的深度学习论文,覆盖了优化/训练方法、无监督/生成模型、卷积网络模型和图像分割/目标检测等十大子领域,重要的论文能够超越其应用领域让人获益。这100篇被引用次数最多的深度学习论文,从海量的相关论文中脱颖而出。无论其应用领域是什么,都值得一读,而在其各自的领域,它们是必读之作。
优化__训练方法.zip
Batch normalization算法:通过减少内部协变量转化加速深度网络的训练
Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015)
作者S. Loffe and C. Szegedy
摘要:训练深层神经网络由于在训练期间每个层的输入的分布改变而变得复杂,因为先前层的参数发生了改变。由于要求较低的学习速率和仔细的参数初始化,它减慢了训练,并且使得训练具有饱和非线性的模型变得非常困难。我们将这种现象称为内部协变量移位(internal covariate shift ),并通过归一化层输入(normalizing layer in- puts
)来解决问题。我们的方法将归一化作为模型架构的一部分,并对每个训练迷你批次(each training mini-batch)执行归一化,从而强化其强度。批量正规化允许我们使用高得多的学习速率,并且不用太考虑初始化的问题。 作为一个调节器,在某些情况下,它也消除了对dropout的需要。应用于最先进的图像分类模型,批量归一化在减少了14倍的训练步骤的情况下实现了相同的精度,并且以显著的余量击败原始模型。凭借一个批量归一化网络的集合,我们改进了ImageNet分类已发布的最好结果:达到4.9%的Top5验证错误(以及4.8%的测试误差),超过人类评估者的准确性。
深度探入纠正器:在 Imagenet 分类中超过人类表现
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015)
作者 K. He et al.
Dropout:一个预防神经网络过拟合的简单方式
Dropout: A simple way to prevent neural networks from overfitting (2014)
作者N. Srivastava et al.
Adam:一个随机优化的方法
Adam: A method for stochastic optimization (2014)
作者 D. Kingma and J. Ba
通过预防特征检测器的互相适应改善神经网络
Improving neural networks by preventing co-adaptation of feature detectors (2012)
作者G. Hinton et al.
超参数最优化的随机搜索
Random search for hyper-parameter optimization (2012) 作者J. Bergstra and Y. Bengio
无监督__生成模型.zip
像素循环神经网络
Pixel recurrent neural networks (2016)
作者 A. Oord et al.
训练GANs的改善性技巧
Improved techniques for training GANs (2016)
作者T. Salimans et al.
摘要:近年来,利用卷积网络(CNN)的监督学习已经在计算机视觉应用中被广泛采用。 相比之下,使用CNN的无监督学习得到的关注较少。 在这项工作中,我们希望帮助弥合CNN的监督学习和无监督学习的成功之间的差距。 我们引入一类称为深层卷积生成对抗网络(DCGAN)的CNN,它们具有某些架构约束,已显示出它们是无监督学习的强有力的候选者。 对各种图像数据集的训练,我们展示了令人信服的证据,表明我们的深层卷积对抗组件从发生器和鉴别器中的对象到场景里面都学习了表征层次。此外,我们使用学习到的特性去完成新任务 – 这显示了它们像一般图像表征一样具有适用性。
使用深度卷积生成对抗网络进行无监督表征学习
Unsupervised representation learning with deep convolutional generative adversarial networks (2015)
作者A. Radford et al.
DRAW:一个用于图像生成的循环神经网络
DRAW: A recurrent neural network for image generation (2015)
作者K. Gregor et al.
生成对抗网络
Generative adversarial nets (2014)
作者I. Goodfellow et al.
自编码变量贝叶斯
Auto-encoding variational Bayes (2013)
作者D. Kingma and M. Welling
用大规模无监督学习构建高水平特征
Building high-level features using large scale unsupervised learning (2013)
作者Q. Le et al.
卷积网络模型.zip
再思考计算机视觉的Inception结构
Rethinking the inception architecture for computer vision (2016)
作者C. Szegedy et al.
摘要:对于多种任务来说,卷及网络处于最先进的计算机视觉解决方案的核心。自2014年以来,超深度卷积网络开始成为主流,在各种benchmark中产生了巨大的收获。虽然对大多数任务来说,增加的模型大小和计算成本往往转化为直接增益(只要提供足够的标记数据用于训练),计算效率和低参数计数仍然是各种用例的有利因素,例如移动视觉和大数据场景。在这里,我们将探讨通过适当的因式分解卷积和积极正则化的方式,尽可能有效地利用增加的算力来扩大网络规模。我们在ILSVRC 2012分类挑战验证集上的benchmark了我们的方法,展示了相对于现有技术的实质性增益:每次推理使用50亿multiply-adds的计算成本及使用少于2500万个参数,每单帧错位率为21.2%top-1和5.6%top-5。综合使用4种模型和multi-crop 评估的综合,我们在验证集上报告3.5%的top-5错误和17.3%的top-1错误,以及正式测试集上3.6%的top-5 错误。
Inception-v4, inception-resnet以及残差连接对学习的影响
Inception-v4, inception-resnet and the impact of residual connections on learning (2016)
作者C. Szegedy et al.
在深度残差网络中识别映射
Identity Mappings in Deep Residual Networks (2016)
作者K. He et al.
图像识别中的深度残差学习
Deep residual learning for image recognition (2016)
作者K. He et al.
深入卷积网络
Going deeper with convolutions (2015)
作者C. Szegedy et al.
大规模图像识别的超深度卷积网络
Very deep convolutional networks for large-scale image recognition (2014)
作者K. Simonyan and A. Zisserman
用于视觉识别的深度卷积网络的空间金字塔池化
Spatial pyramid pooling in deep convolutional networks for visual recognition (2014)
作者K. He et al.
细节魔鬼的回归:深挖卷积网络
Return of the devil in the details: delving deep into convolutional nets (2014)
作者K. Chatfield et al.
OverFeat:使用卷积网络融合识别、本地化和检测
OverFeat: Integrated recognition, localization and detection using convolutional networks (2013)
作者P. Sermanet et al.
Maxout网络
Maxout networks (2013)
作者I. Goodfellow et al.
深度网络架构
Network in network (2013)
作者M. Lin et al.
使用深度卷积神经网络进行ImageNet 分类
ImageNet classification with deep convolutional neural networks (2012)
作者A. Krizhevsky et al.
图像分割__目标检测.zip
你只看一次:统一、实时的目标检测
You only look once: Unified, real-time object detection (2016)
作者J. Redmon et al.
用于物体精准检测和分割的基于区域的卷积网络
Region-based convolutional networks for accurate object detection and segmentation (2016)
作者R. Girshick et al.
用于语义分割的饱和卷积网络
Fully convolutional networks for semantic segmentation (2015)
作者J. Long et al.
更快速的 R-CNN网络:使用区域建议网络的实时物体检测
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015)
作者S. Ren et al.
快速R-CNN网络
Fast R-CNN (2015)
作者R. Girshick
对精确的物体检测和语义切割更为丰富的特征分层
Rich feature hierarchies for accurate object detection and semantic segmentation (2014)
作者R. Girshick et al.
使用深度卷积网络和完全连接的CRF进行语义图像分割
Semantic image segmentation with deep convolutional nets and fully connected CRFs
作者L. Chen et al.
用于场景标注的层级特征学习
Learning hierarchical features for scene labeling (2013)
作者C. Farabet et al.
图像__视频__其他.zip
利用深度卷积网络的图像超分辨率
Image Super-Resolution Using Deep Convolutional Networks (2016)
作者C. Dong et al.
摘要:我们提出了一种用于单图像超分辨率(SR)的深度学习方法。 我们的方法直接学习低/高分辨率图像之间的端对端映射。 该映射被表示为以低分辨率图像作为输入并输出高分辨率图像的深度卷积神经网络(CNN)。 我们进一步表明,传统的基于稀疏编码的SR方法也可以看作是一个深层卷积网络。 但不同于传统的分别处理每个组件方法,我们的方法联合优化了所有层。 我们的深度CNN具有轻量的结构,但展示了最先进的恢复能力,并实现实际在线使用的高速度。 我们探索不同的网络结构和参数设置,以实现性能和速度之间的权衡。此外,我们扩展我们的网络,以同时处理三个color channels,并显示了更好的整体重建质量。
基于DNN的艺术风格生成算法
A neural algorithm of artistic style (2015)
作者 L. Gatys et al.
可生成图像说明的深度视觉-语义校准模型
Deep visual-semantic alignments for generating image descriptions (2015)
作者A. Karpathy and L. Fei-Fei
显示、注意以及说明:带有视觉注意模型的神经图像说明生成
Show, attend and tell: Neural image caption generation with visual attention (2015)
作者K. Xu et al.
显示和说明:一个神经图像说明生成器
Show and tell: A neural image caption generator (2015)
作者O. Vinyals et al.
用于视觉识别和描述的长期循环卷积网络
Long-term recurrent convolutional networks for visual recognition and description (2015)
作者J. Donahue et al.
VQA:视觉问答
VQA: Visual question answering (2015)
作者S. Antol et al.
DeepFace:在面部验证任务中接近人类表现
DeepFace: Closing the gap to human-level performance in face verification (2014)
作者Y. Taigman et al.
利用卷积神经网络进行大规模视频分类
Large-scale video classification with convolutional neural networks (2014)
作者A. Karpathy et al.
DeepPose:利用深度神经网络评估人类姿势
DeepPose: Human pose estimation via deep neural networks (2014)
作者A. Toshev and C. Szegedy
用于视频中动作识别的双流卷积网络
Two-stream convolutional networks for action recognition in videos (2014)
作者K. Simonyan et al.
用于人类动作识别的3D 卷积神经网络
3D convolutional neural networks for human action recognition (2013)
作者S. Ji et al.
递归神经网络模型.zip
递归神经网络的条件随机场
Conditional random fields as recurrent neural networks (2015)
作者S. Zheng and S. Jayasumana.
记忆网络
Memory networks (2014)
作者J. Weston et al.
神经网络图灵机
Neural turing machines (2014)
作者A. Graves et al.
递归神经网络生成序列
Generating sequences with recurrent neural networks (2013)
作者A. Graves.
自然语言处理.zip
应用于神经网络机器翻译的无显式分割字符级解码器
A character-level decoder without explicit segmentation for neural machine translation (2016)
作者J. Chung et al.
探索语言建模的局限性
Exploring the limits of language modeling (2016)
作者R. Jozefowicz et al.
教机器阅读和理解
Teaching machines to read and comprehend (2015)
作者 K. Hermann et al.
摘要:教机器阅读自然语言文档仍然是一个难以应付的挑战。对于看到的文档内容,我们可以测试机器阅读系统回答相关问题的能力,但是到目前为止,对于这种类型的评估仍缺少大规模的训练和测试数据集。在这项工作中,我们定义了一种新的方法来解决这个瓶颈,并提供了大规模的监督阅读理解数据。 这允许我们开发一类基于attention的深层神经网络,凭借最少的语言结构的先验知识来学习阅读真实文档和回答复杂的问题 。
attended-based神经网络机器翻译有效策略
Effective approaches to attention-based neural machine translation (2015)
作者 M. Luong et al.
通过共同学习对齐和翻译实现神经机器翻译
Neural machine translation by jointly learning to align and translate (2014)
作者 D. Bahdanau et al.
利用神经网络进行序列到序列的学习
Sequence to sequence learning with neural networks (2014)
作者I. Sutskever et al.
用 RNN 编码——解码器学习短语表征,实现统计机器翻译
Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014)
作者K. Cho et al.
一个为句子建模的卷积神经网络
A convolutional neural network for modelling sentences (2014)
作者 N. Kalchbrenner et al.
用于句子分类的卷积神经网络
Convolutional neural networks for sentence classification (2014)
作者Y. Kim
Glove: 用于词表征的全局向量
Glove: Global vectors for word representation (2014)
作者 J. Pennington et al.
句子和文档的分布式表示
Distributed representations of sentences and documents (2014)
作者Q. Le and T. Mikolov
词、短语及其合成性的分布式表征
Distributed representations of words and phrases and their compositionality (2013)
作者T. Mikolov et al.
有效评估词在向量空间中的表征
Efficient estimation of word representations in vector space (2013)
作者T. Mikolov et al.
基于情感树库应用于情感组合研究的递归深度网络模型
Recursive deep models for semantic compositionality over a sentiment treebank (2013)
作者R. Socher et al.
语音__其他领域.zip
端到端attention-based大规模词表语音识别
End-to-end attention-based large vocabulary speech recognition (2016)
作者 D. Bahdanau et al.
Deep speech 2:中英文端到端语音识别
Deep speech 2: End-to-end speech recognition in English and Mandarin (2015)
作者 D. Amodei et al.
使用深度循环网络进行语音识别
Speech recognition with deep recurrent neural networks (2013)
作者A. Graves
用于语音识别中声学建模的深度神经网络:四个研究小组的观点分享
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups (2012)
作者G. Hinton et al.
摘要:大多数当前的语音识别系统都使用隐马尔科夫模型(HMMs)来解决语音中的时间变化问题,用混合高斯模型(GMMs)来评价每一个HMM拟合声音输入表示帧或者小窗口帧系数的效果。存在一种替代评价方法是使用前馈神经网络来将多个帧系数作为输入,将HMM状态的后验概率作为输出。深度神经网络有很多隐藏层,通过新的方法进行训练,在很多语音识别任务上都比GMM模型更加出众,有时甚至会好非常多。本文将会做一个综述,分别对四家研究机构在最近语音识别的声学建模领域取得的成功进行介绍。
基于上下文预训练的深度神经网络在大规模词表语音识别中的应用
Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition (2012)
作者G. Dahl et al.
使用深度置信网络进行声学建模
Acoustic modeling using deep belief networks (2012)
作者A. Mohamed et al.
强化学习.zip
深度视觉运动策略的端到端训练
End-to-end training of deep visuomotor policies (2016),
作者S. Levine et al.
利用深度学习和大规模数据搜集,学习眼手协调的机器人抓取
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection (2016)
作者 S. Levine et al.
深度强化学习的异步方法
Asynchronous methods for deep reinforcement learning (2016)
作者V. Mnih et al.
使用双Q学习的深度强化学习
Deep Reinforcement Learning with Double Q-Learning (2016)
作者 H. Hasselt et al.
通过深度神经网络和树搜索来掌控围棋游戏
Mastering the game of Go with deep neural networks and tree search (2016)
作者 D. Silver et al.
摘要:围棋被视为人工智能挑战经典游戏中最难的一个,因为其巨大的搜索空间和对位置和移动的评价难度。本文提出了一种新方法使用“值网络”来评价位置,用“策略网络”来选择移动。这些深度神经网络是从人类专家棋局中进行有监督学习,然后在从自对弈中进行强化学习。如果不考虑前向搜索的话,当前最好的神经网路模型是蒙特卡洛树搜索,这种方法通过进行上千局的自对弈来进行仿真。我们也介绍了一种新点的搜索算法,将蒙特卡洛仿真与值网络和策略网络进行了综合。使用这种搜索算法,我们的项目AlphaGo有99.8%的胜率,并且以5:0的比分打败了来自欧洲的人类冠军。这也是计算机第一次在真实围棋比赛中击败人类专业选手,将10年后的目标提前完成了。
采用深度强化学习进行持续控制
Continuous control with deep reinforcement learning (2015)
作者T. Lillicrap et al.
通过深度强化学习实现人类水平控制
Human-level control through deep reinforcement learning (2015)
作者V. Mnih et al.
侦测机器人抓取的深度学习
Deep learning for detecting robotic grasps (2015)
作者 I. Lenz et al.
用强化学习玩atari游戏
Playing atari with deep reinforcement learning (2013)
作者V. Mnih et al.
深度学习 论文
Layer Normalization (2016), J. Ba et al.
Learning to learn by gradient descent by gradient descent (2016), M. Andrychowicz et al.
Domain-adversarial training of neural networks (2016), Y. Ganin et al.
WaveNet: A Generative Model for Raw Audio (2016), A. Oord et al.
Colorful image colorization (2016), R. Zhang et al.
Generative visual manipulation on the natural image manifold (2016), J. Zhu et al.
Texture networks: Feed-forward synthesis of textures and stylized images (2016), D Ulyanov et al.
SSD: Single shot multibox detector (2016), W. Liu et al.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size (2016), F. Iandola et al.
Eie: Efficient inference engine on compressed deep neural network (2016), S. Han et al.
Binarized neural networks: Training deep neural networks with weights and activations constrained to+ 1 or-1 (2016), M. Courbariaux et al.
Dynamic memory networks for visual and textual question answering (2016), C. Xiong et al.
Stacked attention networks for image question answering (2016), Z. Yang et al.
Hybrid computing using a neural network with dynamic external memory (2016), A. Graves et al.
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation (2016), Y. Wu et al.
100篇之外深度学习.zip
新论文:最近6个月以内的
Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models, S. Ioffe.
Wasserstein GAN, M. Arjovsky et al.
Understanding deep learning requires rethinking generalization, C. Zhang et al. [pdf]
老论文:2012年以前的
An analysis of single-layer networks in unsupervised feature learning (2011), A. Coates et al.
Deep sparse rectifier neural networks (2011), X. Glorot et al.
Natural language processing (almost) from scratch (2011), R. Collobert et al.
Recurrent neural network based language model (2010), T. Mikolov et al.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010), P. Vincent et al.
Learning mid-level features for recognition (2010), Y. Boureau
A practical guide to training restricted boltzmann machines (2010), G. Hinton
Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio
Why does unsupervised pre-training help deep learning (2010), D. Erhan et al.
Recurrent neural network based language model (2010), T. Mikolov et al.
Learning deep architectures for AI (2009), Y. Bengio.
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al.
Greedy layer-wise training of deep networks (2007), Y. Bengio et al.
Reducing the dimensionality of data with neural networks, G. Hinton and R. Salakhutdinov.
A fast learning algorithm for deep belief nets (2006), G. Hinton et al.
Gradient-based learning applied to document recognition (1998), Y. LeCun et al.
Long short-term memory (1997), S. Hochreiter and J. Schmidhuber.
阿里巴巴Java开发手册(正式版)高清完整.pdf下载
阿里巴巴Java开发手册,首次公开阿里官方Java代码规范标准。这套Java统一规范标准将有助于提高行业编码规范化水平,帮助行业人员提高开发质量和效率、大大降低代码维护成本。
相比C++代码规范业界已经达成共识,Java代码规范业界比较混乱,我们期待这次发布的Java代码规范能够给业界带来一个标准,促使整体行业代码规范水平得到提高,最终能够帮助企业和开发者提升代码质量和降低代码故障率。
此次首度公开的Java开发手册正是出自这样的团队,近万名阿里Java技术精英的经验总结,并经历了多次大规模一线实战检验及完善,铸就了这本高含金量的阿里Java开发手册。该手册以Java开发者为中心视角,划分为编程规约、异常日志规约、MYSQL规约、工程规约、安全规约五大块,再根据内容特征,细分成若干二级子目录。根据约束力强弱和故障敏感性,规约依次分为强制、推荐、参考三大类。此套规范不仅能让代码一目了然, 更有助于加强团队分工与合作、真正提升效率。
AI + : 2016 人工智能影响力微报告.pdf
2016年最热门的科技名词是什么?人工智能当之无愧,这个已经存在了60年度的技术领域因为谷歌的AlphaGo人机大战而声名鹊起,从过去的高高在上到今天的人人皆知,人工智能已经无处不在。今年年初的Apple的Siri,亚马逊的Echo和Alexa,阿里巴巴的ET和阿里小蜜,蚂蚁金服的刷脸支付,Google的无人车等都有人工智能技术的身影。投资界和产业界对AI的关注度更是前所未有的高涨,令人联想起2000年左右互联网热潮兴起的时代。2016年是AI+元年,从互联网+、大数据+到今天的AI+,会成为各行业数字化转型的重要方向,融合趋势势不可挡。
根据Gartner 2016年7月最新的新兴技术成熟度曲线可以看出,感知智能机器时代正在来临,33项技术之中,与人工智能相关的技术占到一半的比例,其中最值得关注的是机器学习技术已经到达炒作顶峰,预示着未来2-5年内会得到广泛应用。
双十一背后的英雄: 大数据计算平台.pdf
双11对阿里云大数据平台的技术挑战主要体现在两方面。实时数据处理技术方面,包括日志数据和交易数据的实时采集、分发、计算,最终在媒体直播大屏上实时渲染和展示,整个链路的稳定性保障压力是巨大的。今年双11,阿里云实时大数据系统完成了三项世界级的挑战:1.低延时,从零点第一笔交易发生,到媒体大屏上显示出统计结果,整个处理过程仅延时仅几秒钟;2.高性能、高吞吐,最高处理速度达到千万条/秒,流计算的整体性能比去年提升了N倍;3.高可用,全天服务不降级、无故障,扛下了高峰期所有的流量。而在超大规模的离线数据处理方面,双11期间,阿里云MaxCompute抗下了单天数据处理峰值上百PB,以及百万级的调度作业,这对于作业调度、计算性能、系统稳定性等都是极大的考验。
双十一背后的网络自动化技术.pdf
每年的双11对阿里的网络都是一次严峻的考验。在双11当天,阿里的网络必须承载来自于世界各地数以亿计的用户所带来的巨大流量。而在这期间,任何一个看起来微小的故障或者失误都有可能给阿里的客户带来难以估量的损失。为了保证网络能够稳定可靠的度过双11,我们必须在双11之前就计划并且做好大量的准备工作,这包括1)对整个网络进行多维度多批次的检查,将绝大部分的隐患和风险提前进行修复,减小故障可能发生的机率;2)对双11活动期间任何可能出现的故障,提前设计并且演练好预案,以保证即便故障发生也能够做到快速的处理和恢复,减小故障对客户的影响。在这次演讲中,我们将会介绍阿里网络团队所打造的一系列网络自动化工具,正是这些工具让我们能够完成这些细致而又繁重的准备工作,让阿里的网络可以轻松应对双11的挑战。
双11媒体大屏背后的数据技术和产品.pdf
阿里巴巴数据技术与产品部连续多年承担双11媒体大屏的实时计算开发任务,看似激动人心的数字背后,蕴含着这支技术团队多年来不断进行技术优化、追求卓越的努力,从最开始手忙脚乱、惊心动魄,到现在的轻松应对、运筹帷幄,他们到底进行了哪些技术改进?阿里巴巴公共数据平台团队负责人罗金鹏,将从技术架构、模型重构、资源调度、链路保障等多方面为大家带来精彩的解读。
数据赋能商家背后的AI技术 .pdf
大数据时代下,阿里巴巴在平台积累了丰富的经验,并正在从赋能平台向赋能商家演进。我们利用机器学习与人工智能技术,为商家提供一系列更加智能的产品,帮助他们更好的经营。本次分享将为大家介绍阿里是如果利用大数据技术来为商家赋能,包括千人千面的商铺个性化、智能海报、头条等。
手机端的创新体验:VR&AR.pdf
无论是创新的Buy+VR购物体验,还是双11丰富多彩的互动玩法,都让广大消费者在满足购物需求的同时提前体验到未来的新零售时代,而这些脑洞大开的技术革命都离不开来虚拟&互动实验室的同学们。本次分享将以VR电商购物为例,探讨手机端的创新体验研发的经验;同时,分享对移动营销活动的快速交付体系的思考。