大数据-数据分析初步学习,待补充

参考视频:数据分析只需3小时从入门到进阶(up亲身实践)_哔哩哔哩_bilibili

数据指标:

        对当前业务有参考价值的统计数据

        分类:用户数据,业务数据,行为数据

用户数据

        存量:
                DAU(daily active user):

                        日活跃用户,定义一个自然日不重复(去重)的用户,跨时区(如全球服务),则关心最近24小时

                MAU(monthly active user):

                        月活跃用户,MAU <= 总用户数,一个月里不重复(去重)的用户总量

                        活跃:事件上报 -》定义为活跃用户

                                1 用户的主动动作定义为活跃用户,   谨防:活跃数据爆增,但其他数据没有明显变化

                                2 操作事件定义为活跃用户,列出 日活事件列表(存在维护和沟通成本)

        

        增量:
                新增用户

        健康程度:
                存留率

                

 

        从哪儿来:

                渠道来源

        

业务数据

        总量:
                GMV(Gross Merchandise Volume) :商品交易总额
                访问时长
        人均:
                ARPU:

                     每用户平均收入,计算某段时间内平均每个活跃用户为应用创造的收入   

                ARPPU:

                      每付费用户平均收益,计算某短时间内平均每个付费用户为应用创造的收入  

                人均访问时长
        人数:

                付费人数

                访问人数

        健康程度:

                付费率,付费频次

                留存率

        被消费对象

                SKU视角

                被消费内容视角

                

行为数据

        次数、频率
                PV(Page Views):页面浏览量

                        不去重

                UV(Unique Visitors):独立访问数

                        去重

                一般PV/PV,UV/UV,也有PV/UV,eg:详情页PV/详情页UV=人均页面查看数

                深度访问

        路径走通程度:
                转化率
        做了多久
                时长

        质量
                弹出率(Bounce Rate)

                        用户来了,啥都没干,立马走了

弹出率:3(用户1,4,6)/6,如果用户1多次来了,按不去重统计

数据分析

01 对比分析

环比:日环比(今天和昨天),周环比(本周和上一周),月环比.. 

 同比:周同比(本周的第几天和上周的第几天对比),月同比...

02 多维度拆分

单纯看人数,无从下手如何提高,可以从渠道、城市等维度查看

03 漏斗观察分析

04 分布分析

05 用户留存分析

06 用户画像分析

07 归因查找分析

​​​​​​​

08 路径挖掘分析

09 行为序列分析

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值