from itertools import permutations
num =int(input())
ans =0for n inrange(1, num+1):if'0'instr(n)orlen(set(list(str(n))))!=len(str(n)):# 判断是否有0和重复数字continue
diff = num - n # 剩下的数(后面的分数应该算出来的值)
s ='123456789'for i instr(n):
s = s.replace(i,'')# 去掉已经使用过的数for length inrange(1,len(s)//2+1):# 分母的长度for i in permutations(s, length):# 长度为length的分母的全排列
fenzi =str(int(''.join(i))* diff)# 计算分子iflen(fenzi)==len(s)- length:# 判断计算出来的分子是否合法ifset(list(fenzi))==set(list(s))-set(list(''.join(i))):
ans +=1print(ans)
num =0defrecu(step,n):global num
if n >39:returnif n ==39and step %2==0:
num +=1return
recu(step+1,n+1)
recu(step+1,n+2)
recu(0,0)print(num)
穿越雷区
问题描述
X星的坦克战车很奇怪,它必须交替地穿越正能量辐射区和负能量辐射区才能保持正常运转,否则将报废。
某坦克需要从A区到B区去(A,B区本身是安全区,没有正能量或负能量特征),怎样走才能路径最短?
已知的地图是一个方阵,上面用字母标出了A,B区,其它区都标了正号或负号分别表示正负能量辐射区。
例如:
A +-+--+--+-+++-+-+-+
B +-+-
坦克车只能水平或垂直方向上移动到相邻的区。
数据格式要求:
输入第一行是一个整数n,表示方阵的大小, 4<=n<100
接下来是n行,每行有n个数据,可能是A,B,+,-中的某一个,中间用空格分开。
A,B都只出现一次。
要求输出一个整数,表示坦克从A区到B区的最少移动步数。
如果没有方案,则输出-1
例如:
用户输入:
5
A +-+--+--+-+++-+-+-+
B +-+-
则程序应该输出:
10
n =int(input())
m =[input().split(' ')for _ inrange(n)]
visit =[[False]* n for _ inrange(n)]# 记录是否访问过
step =[(0,-1),(0,1),(-1,0),(1,0)]
queue =[(0,0,0)]# 存三个值:坐标、当前移动的步数while queue:
y, x, t = queue.pop(0)if m[y][x]=='B':print(t)breakfor dy, dx in step:
ny = y + dy
nx = x + dx
if-1< nx < n and-1< ny < n:ifnot visit[ny][nx]and m[y][x]!= m[ny][nx]:# 没有访问过并且不是连续走相同的区域
queue.append((ny, nx, t+1))
visit[y][x]=Trueifnot queue:print(-1)
a, b, c, d =map(int,input().split(' '))
step =[(1,2),(1,-2),(-1,2),(-1,-2),(2,1),(2,-1),(-2,1),(-2,-1)]
visit =[[False]*8for _ inrange(8)]
queue =[(a, b,0)]# 坐标、步数while queue:
y, x, t = queue.pop(0)if y == c and x == d:print(t)breakfor dy, dx in step:
ny = y + dy
nx = x + dx
if-1< ny <8and-1< nx <8andnot visit[ny][nx]:
queue.append((ny, nx, t+1))
visit[ny][nx]=Trueifnot queue:print(-1)
路径之谜
小明冒充X星球的骑士,进入了一个奇怪的城堡。
城堡里边什么都没有,只有方形石头铺成的地面。
假设城堡地面是 n x n 个方格。【如图1.png】所示。
按习俗,骑士要从西北角走到东南角。
可以横向或纵向移动,但不能斜着走,也不能跳跃。
每走到一个新方格,就要向正北方和正西方各射一箭。
(城堡的西墙和北墙内各有 n 个靶子)
同一个方格只允许经过一次。但不必走完所有的方格。
如果只给出靶子上箭的数目,你能推断出骑士的行走路线吗?
有时是可以的,比如图1.png中的例子。
本题的要求就是已知箭靶数字,求骑士的行走路径(测试数据保证路径唯一)
输入
第一行一个整数N(0<N<20),表示地面有 N x N 个方格
第二行N个整数,空格分开,表示北边的箭靶上的数字(自西向东)
第三行N个整数,空格分开,表示西边的箭靶上的数字(自北向南)
输出
一行若干个整数,表示骑士路径。
为了方便表示,我们约定每个小格子用一个数字代表,从西北角开始编号:0,1,2,3…
比如,图1.png中的方块编号为:
0123456789101112131415
样例输入
424344333
样例输出
045123711109131415
n =int(input())
nums =[list(map(int,input().split(' ')))for _ inrange(2)]# 第一行是上面的,第二行是左面的
visit =[[False]*n for _ inrange(n)]
visit[0][0]=True
ans =[0]
record =[[0]*n for _ inrange(2)]
record[0][0]= record[1][0]=1
step =[(0,-1),(0,1),(-1,0),(1,0)]defdfs(y, x):if y == n-1and x == n-1and record == nums:print(' '.join(map(str, ans)))returnfor dy, dx in step:
ny = y + dy
nx = x + dx
if-1< ny < n and-1< nx < n andnot visit[ny][nx]:
ans.append(ny*n + nx)
visit[ny][nx]=True
record[0][nx]+=1
record[1][ny]+=1
dfs(ny, nx)
ans.pop()
visit[ny][nx]=False
record[0][nx]-=1
record[1][ny]-=1
dfs(0,0)
m, n =map(int,input().split(' '))
record =[[-1]*(n+1)for _ inrange(m+1)]defdfs(a, b):# 还鞋、借鞋if a == b ==0:return1if record[a][b]!=-1:
ans = record[a][b]else:
ans =0if a >0:
ans += dfs(a-1, b)if0< b <= a:
ans += dfs(a, b-1)
record[a][b]= ans
return ans
print(dfs(m, n))
defcheck(record, i, j):# 根据之前已有的,判断第i行第j列可不可以放for k inrange(i):# 遍历前面所有的行,k:之前某一行if j == record[k]orabs(record[k]- j)==abs(i - k):returnFalsereturnTruedefdfs(record, i, color):if i == n:# 到达最后一行,也就是说所有皇后都可以摆上if color =='black':
dfs([0]*n,0,'white')else:global ans
ans +=1returnfor j inrange(n):# 检查当前第i行的皇后放在第j列是否合法if m[i][j]=='1':if check(record, i, j):
m[i][j]='2'
record[i]= j
dfs(record, i+1, color)
m[i][j]='1'
n =int(input())
m =[input().split(' ')for _ inrange(n)]
ans =0
dfs([0]*n,0,'black')print(ans)