书生·浦语是上海人工智能实验室和商汤科技联合研发的一款大模型,很高兴能参与本次第二期训练营,我也将会通过笔记博客的方式记录学习的过程与遇到的问题,并为代码添加注释,希望可以帮助到你们。
记得点赞哟(๑ゝω╹๑)
轻松玩转书生·浦语大模型趣味 Demo
[B站教学视频](轻松玩转书生·浦语大模型趣味 Demo_哔哩哔哩_bilibili)
1 趣味 Demo 任务列表
本节课可以让同学们实践 4 个主要内容,分别是:
- 部署
InternLM2-Chat-1.8B
模型进行智能对话 - 部署实战营优秀作品
八戒-Chat-1.8B
模型 - 通过
InternLM2-Chat-7B
运行Lagent
智能体Demo
- 实践部署
浦语·灵笔2
模型
2 部署 InternLM2-Chat-1.8B
模型进行智能对话
注意:需要先注册账号,并向助教老师申请算力与GPU配额,不同的模型随着参数的不断扩大,需要的显存和算力也会越大,GPU配额要求也会越高
2.1 配置基础环境
首先,打开 Intern Studio
界面,点击 创建开发机 配置开发机系统。
填写 开发机名称
后,点击 选择镜像 使用 Cuda11.7-conda
镜像,然后在资源配置中,使用 10% A100 * 1
的选项,然后立即创建开发机器。(名字可以按照喜好取,不影响后续使用)
注意:当前项目只需要10%配额,后续项目会逐步提高GPU配额要求,可以向助教老师继续申请
点击 进入开发机
选项。
进入开发机后,在 terminal
中输入环境配置命令 (配置环境时间较长,需耐心等待):
studio-conda -o internlm-base -t demo
# 与 studio-conda 等效的配置方案
# conda create -n demo python==3.10 -y
# conda activate demo
# conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
配置完成后,进入到新创建的 conda
环境之中:
conda activate demo
输入以下命令,完成环境包的安装:
pip install huggingface-hub==0.17.3
pip install transformers==4.34
pip install psutil==5.9.8
pip install accelerate==0.24.1
pip install streamlit==1.32.2
pip install matplotlib==3.8.3
pip install modelscope==1.9.5
pip install sentencepiece==0.1.99
2.2 下载 InternLM2-Chat-1.8B
模型
按路径创建文件夹,并进入到对应文件目录中:
mkdir -p /root/demo
touch /root/demo/cli_demo.py
touch /root/demo/download_mini.py
cd /root/demo
通过左侧文件夹栏目,双击进入 demo
文件夹。
双击打开 /root/demo/download_mini.py
文件,复制以下代码:
import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")
# save_dir是模型保存到本地的目录
save_dir="/root/models"
snapshot_download("Shanghai_AI_Laboratory/internlm2-chat-1_8b",
cache_dir=save_dir,
revision='v1.1.0')
执行命令,下载模型参数文件:
python /root/demo/download_mini.py
2.3 运行 cli_demo
双击打开 /root/demo/cli_demo.py
文件,复制以下代码:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# 指定模型名称或路径
model_name_or_path = "/root/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
# 从预训练模型中加载 tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
# 从预训练模型中加载模型,使用 torch 的 bfloat16 数据类型,将模型放在 CUDA 设备上
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
# 将模型设置为评估模式
model = model.eval()
# 系统提示信息,介绍了这个 AI 助手的基本信息
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
# 将系统提示信息存储在元组中
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
# 进入对话循环
while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '') # 移除输入中的空格
if input_text == "exit": # 如果输入是 exit,则退出对话循环
break
length = 0
# 使用模型的 stream_chat 方法来生成响应消息
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
# 打印响应消息
print(response[length:], flush=True, end="")
length = len(response)
输入命令,执行 Demo 程序:
conda activate demo
python /root/demo/cli_demo.py
等待模型加载完成,键入内容示例:
请创作一个 300 字的小故事
效果如下:
到这里第一个实战任务就结束啦,记得截图保存到自己的作业文档中,输入exit结束运行
3 实战:部署实战营优秀作品 八戒-Chat-1.8B
模型
3.1 简单介绍 八戒-Chat-1.8B
、Chat-嬛嬛-1.8B
、Mini-Horo-巧耳
(实战营优秀作品)
八戒-Chat-1.8B
、Chat-嬛嬛-1.8B
、Mini-Horo-巧耳
均是在第一期实战营中运用 InternLM2-Chat-1.8B
模型进行微调训练的优秀成果。其中,八戒-Chat-1.8B
是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。作为 Roleplay-with-XiYou
子项目之一,八戒-Chat-1.8B
能够以较低的训练成本达到不错的角色模仿能力,同时低部署条件能够为后续工作降低算力门槛。
当然,同学们也可以参考其他优秀的实战营项目,具体模型链接如下:
- 八戒-Chat-1.8B:https://www.modelscope.cn/models/JimmyMa99/BaJie-Chat-mini/summary
- Chat-嬛嬛-1.8B:https://openxlab.org.cn/models/detail/BYCJS/huanhuan-chat-internlm2-1_8b
- Mini-Horo-巧耳:https://openxlab.org.cn/models/detail/SaaRaaS/Horowag_Mini
🍏那么,开始实验!!!
3.2 配置基础环境
运行环境命令:
conda activate demo
使用 git
命令来获得仓库内的 Demo 文件:
cd /root/
git clone https://gitee.com/InternLM/Tutorial -b camp2
# git clone https://github.com/InternLM/Tutorial -b camp2
cd /root/Tutorial
3.3 下载运行 Chat-八戒 Demo
在 Web IDE
中执行 bajie_download.py
:
python /root/Tutorial/helloworld/bajie_download.py
待程序下载完成后,输入运行命令:
streamlit run /root/Tutorial/helloworld/bajie_chat.py --server.address 127.0.0.1 --server.port 6006
划重点
接下来会教学如何配置SSH连接本地环境,需要根据InternStudio开发机的端口号,通过本地的powershell终端,连接实现本地网页部署和展现
待程序运行的同时,对端口环境配置本地 PowerShell
。使用快捷键组合 Windows + R
(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键。(Mac 用户打开终端即可)
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):
# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374
若出现以下内容,输入yes
再复制下方的密码,输入到 password
中,直接回车:(Ctrl+v并回车后不会出现密码)
最终保持在如下效果即可:
打开 http://127.0.0.1:6006 后,等待加载完成即可进行对话,键入内容示例如下:
你好,请自我介绍
效果图如下:
到这里第二个实战任务就结束啦,这部分不作为作业,但可以继续和八戒聊一会儿天,输入Ctrl+c或关闭终端结束运行
4 实战:使用 Lagent
运行 InternLM2-Chat-7B
模型(开启 30% A100 权限后才可开启此章节)
注意:当前项目需要30%配额,记得向助教老师申请,并通过升降配置修改配额,具体教程见下文
4.1 初步介绍 Lagent 相关知识
Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。它的整个框架图如下:
Lagent 的特性总结如下:
-
流式输出:提供 stream_chat 接口作流式输出,本地就能演示酷炫的流式 Demo。
-
接口统一,设计全面升级,提升拓展性,包括:
- Model : 不论是 OpenAI API, Transformers 还是推理加速框架 LMDeploy 一网打尽,模型切换可以游刃有余;
- Action: 简单的继承和装饰,即可打造自己个人的工具集,不论 InternLM 还是 GPT 均可适配;
- Agent:与 Model 的输入接口保持一致,模型到智能体的蜕变只需一步,便捷各种 agent 的探索实现;
-
文档全面升级,API 文档全覆盖。
4.2 配置基础环境(开启 30% A100 权限后才可开启此章节)
打开 Intern Studio
界面,调节配置(必须在开发机关闭的条件下进行):
重新开启开发机,输入命令,开启 conda 环境:
conda activate demo
打开文件子路径
cd /root/demo
使用 git 命令下载 Lagent 相关的代码库:
git clone https://gitee.com/internlm/lagent.git
# git clone https://github.com/internlm/lagent.git
cd /root/demo/lagent
git checkout 581d9fb8987a5d9b72bb9ebd37a95efd47d479ac
pip install -e . # 源码安装
运行效果如图:
4.3 使用 Lagent
运行 InternLM2-Chat-7B
模型为内核的智能体
Intern Studio
在 share 文件中预留了实践章节所需要的所有基础模型,包括 InternLM2-Chat-7b
、InternLM2-Chat-1.8b
等等。我们可以在后期任务中使用 share
文档中包含的资源,但是在本章节,为了能让大家了解各类平台使用方法,还是推荐同学们按照提示步骤进行实验。
打开 lagent 路径:
cd /root/demo/lagent
在 terminal 中输入指令,构造软链接快捷访问方式:
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b
打开 lagent
路径下 examples/internlm2_agent_web_demo_hf.py
文件,并修改对应位置 (71行左右) 代码:
# 其他代码...
value='/root/models/internlm2-chat-7b'
# 其他代码...
输入运行命令 - 点开 6006 链接后,大约需要 5 分钟完成模型加载:
streamlit run /root/demo/lagent/examples/internlm2_agent_web_demo_hf.py --server.address 127.0.0.1 --server.port 6006
待程序运行的同时,对本地端口环境配置本地 PowerShell
。使用快捷键组合 Windows + R
(Windows 即开始菜单键)打开指令界面,并输入命令,按下回车键,同八戒部分的操作
。(Mac 用户打开终端即可)
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):
# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374
再复制下方的密码,输入到 password
中,直接回车:
最终保持在如下效果即可:
打开 http://127.0.0.1:6006 后,(会有较长的加载时间)勾上数据分析,其他的选项不要选择和操作
,进行计算方面的 Demo 对话,即完成本章节实战。键入内容示例:
请解方程 2*X=1360 之中 X 的结果
到这里第三个实战任务就结束啦,这部分请同样记得截图保存到自己的作业文档中,输入Ctrl+c或关闭终端结束运行
5 实战:实践部署 浦语·灵笔2
模型(开启 50% A100 权限后才可开启此章节)
注意:当前项目需要最高的50%配额,记得向助教老师申请,并通过升降配置修改配额,具体教程见下文
5.1 初步介绍 XComposer2
相关知识
浦语·灵笔2
是基于 书生·浦语2
大语言模型研发的突破性的图文多模态大模型,具有非凡的图文写作和图像理解能力,在多种应用场景表现出色,总结起来其具有:
- 自由指令输入的图文写作能力:
浦语·灵笔2
可以理解自由形式的图文指令输入,包括大纲、文章细节要求、参考图片等,为用户打造图文并貌的专属文章。生成的文章文采斐然,图文相得益彰,提供沉浸式的阅读体验。 - 准确的图文问题解答能力:
浦语·灵笔2
具有海量图文知识,可以准确的回复各种图文问答难题,在识别、感知、细节描述、视觉推理等能力上表现惊人。 - 杰出的综合能力:
浦语·灵笔2-7B
基于书生·浦语2-7B
模型,在13项多模态评测中大幅领先同量级多模态模型,在其中6项评测中超过GPT-4V
和Gemini Pro
。
5.2 配置基础环境(开启 50% A100 权限后才可开启此章节)
选用 50% A100
进行开发:
进入开发机,启动 conda
环境:
conda activate demo
# 补充环境包
pip install timm==0.4.12 sentencepiece==0.1.99 markdown2==2.4.10 xlsxwriter==3.1.2 gradio==4.13.0 modelscope==1.9.5
下载 InternLM-XComposer 仓库 相关的代码资源:
cd /root/demo
git clone https://gitee.com/internlm/InternLM-XComposer.git
# git clone https://github.com/internlm/InternLM-XComposer.git
cd /root/demo/InternLM-XComposer
git checkout f31220eddca2cf6246ee2ddf8e375a40457ff626
在 terminal
中输入指令,构造软链接快捷访问方式:
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-7b /root/models/internlm-xcomposer2-7b
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm-xcomposer2-vl-7b /root/models/internlm-xcomposer2-vl-7b
5.3 图文写作实战(开启 50% A100 权限后才可开启此章节)
继续输入指令,用于启动 InternLM-XComposer
:
cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_composition.py \
--code_path /root/models/internlm-xcomposer2-7b \
--private \
--num_gpus 1 \
--port 6006
待程序运行的同时,参考章节 3.3 部分对端口环境配置本地 PowerShell
。使用快捷键组合 Windows + R
(Windows 即开始菜单键)打开指令界面,(Mac 用户打开终端即可)并输入命令,按下回车键:
打开 PowerShell 后,先查询端口,再根据端口键入命令 (例如图中端口示例为 38374):
# 从本地使用 ssh 连接 studio 端口
# 将下方端口号 38374 替换成自己的端口号
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p 38374
再复制下方的密码,输入到 password
中,直接回车:
最终保持在如下效果即可:
打开 http://127.0.0.1:6006 实践效果如下图所示:
此时输入框中已经自带生成水墨画的描述文字,点击submit提交即可(也可以尝试自己想要的内容)
可以看到模型先是根据现有文字,拓展生成一系列文字并作为prompt,随后对每段映射到对应相关内容的图片,从而生成对应插图
5.4 图片理解实战(开启 50% A100 权限后才可开启此章节)
根据附录 6.4 的方法,关闭并重新启动一个新的 terminal
,继续输入指令,启动 InternLM-XComposer2-vl
:
conda activate demo
cd /root/demo/InternLM-XComposer
python /root/demo/InternLM-XComposer/examples/gradio_demo_chat.py \
--code_path /root/models/internlm-xcomposer2-vl-7b \
--private \
--num_gpus 1 \
--port 6006
打开 http://127.0.0.1:6006 (上传图片后) 键入内容示例如下:
需要上传需要分析的图片到网页左侧,并在右侧给到需求描述
请分析一下图中内容
实践效果如下图所示:
到这里最后一个实战任务就结束啦,也请不要忘记截图保存到自己的作业文档中,输入Ctrl+c或关闭终端结束运行
6 附录(不必须要求)
6.1 (可选参考)介绍 pip
换源及 conda
换源方法
对于 pip
换源,需要临时使用镜像源安装,如下所示:some-package 为你需要安装的包名
pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple some-package
设置 pip
默认镜像源,升级 pip
到最新的版本 (>=10.0.0) 后进行配置,如下所示:
python -m pip install --upgrade pip
pip config set global.index-url https://mirrors.cernet.edu.cn/pypi/web/simple
如果您的 pip
默认源的网络连接较差,可以临时使用镜像源升级 pip
:
python -m pip install -i https://mirrors.cernet.edu.cn/pypi/web/simple --upgrade pip
对于 conda
换源,镜像站提供了 Anaconda
仓库与第三方源(conda-forge
、msys2
、pytorch
等),各系统都可以通过修改用户目录下的 .condarc
文件来使用镜像站。不同系统下的 .condarc
目录如下:
- Linux:
${HOME}/.condarc
- macOS:
${HOME}/.condarc
- Windows:
C:\Users<YourUserName>.condarc
注意:
- Windows 用户无法直接创建名为
.condarc
的文件,可先执行conda config --set show_channel_urls yes
生成该文件之后再修改。
快速配置
cat <<'EOF' > ~/.condarc
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
EOF
6.2 (可选参考)模型下载,提高作业部分
以下下载模型的操作不建议大家在开发机进行哦,在开发机下载模型会占用开发机的大量带宽和内存,下载等待的时间也会比较长,不利于大家学习。大家可以在自己的本地电脑尝试哦~
6.2.1 Hugging Face
使用 Hugging Face
官方提供的 huggingface-cli
命令行工具。安装依赖:
pip install -U huggingface_hub
然后新建 python
文件,填入以下代码,运行即可。
- resume-download:断点续下
- local-dir:本地存储路径。
其中 linux 环境下需要填写绝对路径.
import os
# 下载模型
os.system('huggingface-cli download --resume-download internlm/internlm2-chat-7b --local-dir your_path')
以下内容将展示使用 huggingface_hub
下载模型中的部分文件
import os
from huggingface_hub import hf_hub_download # Load model directly
hf_hub_download(repo_id="internlm/internlm2-7b", filename="config.json")
6.2.2 ModelScope
使用 modelscope
中的 snapshot_download
函数下载模型,第一个参数为模型名称,参数 cache_dir
为模型的下载路径。
注意:cache_dir
最好为绝对路径。
安装依赖:
pip install modelscope==1.9.5
pip install transformers==4.35.2
在当前目录下新建 python
文件,填入以下代码,运行即可。
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm2-chat-7b', cache_dir='your path', revision='master')
6.2.3 OpenXLab
OpenXLab
可以通过指定模型仓库的地址,以及需要下载的文件的名称,文件所需下载的位置等,直接下载模型权重文件,使用 download
函数导入模型中心的模型。
import torch
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel
base_path = './local_files'
os.system('apt install git')
os.system('apt install git-lfs')
os.system(f'git clone https://code.openxlab.org.cn/Usr_name/repo_name.git {base_path}')
os.system(f'cd {base_path} && git lfs pull')
6.3 (可选参考)软链接清除方法
当我们建立安全链接之后,如果想要将其删除可以选择以下命令:
unlink link_name
我们举一个例子,当我想删除软链接 /root/demo/internlm2-chat-7b
时:
cd /root/demo/
unlink internlm2-chat-7b
6.4 (可选参考)Terminal 终端清除方法
在运行 gradio
程序时,如果需要退出,需要按照图中所示步骤,在 terminal
栏目中点击关闭,然后再重新打开一个 terminal
以继续后面的实验。(否则会出现 显存耗尽
的情况)
以上章节内容仅供参考,并不作为必须实践的内容。
7 作业
实战营作业被放置于 homework 文档,完成课程基础作业可以在后续学习中获得升级算力的机会哦!
Homework - Demo
提交方式:在 CSDN
、知乎
、Github
等平台上传作业后,将链接贴至 飞书作业板 即可。
基础作业 (结营必做)
- 使用
InternLM2-Chat-1.8B
模型生成 300 字的小故事(需截图)
进阶作业 (优秀学员必做)
- 熟悉
huggingface
下载功能,使用huggingface_hub
python 包,下载InternLM2-Chat-7B
的config.json
文件到本地(需截图下载过程) - 完成
浦语·灵笔2
的图文创作
及视觉问答
部署(需截图) - 完成
Lagent
工具调用数据分析
Demo 部署(需截图)