AtCoder Beginner Contest 401

打完codeforces再来打打atcoder

A - Status Code 

思路:就纯纯签到题,if-else判断,不说了

/*
Author Owen_Q
*/
#include <bits/stdc++.h>

using namespace std;

int main() {
    ios_base::sync_with_stdio(false), cin.tie(nullptr);
    int s;
    cin >> s;
    if (s >= 200 && s<= 299) {
        cout <<  "Success\n";
    } else {
        cout <<  "Failure\n";
    }
    return 0;
}

B - Unauthorized 

思路:登录登出模拟,同样是水题,跳过

/*
Author Owen_Q
*/
#include <bits/stdc++.h>

using namespace std;

int main() {
    ios_base::sync_with_stdio(false), cin.tie(nullptr);
    int n;
    string s;
    cin >> n;
    int errorNum = 0;
    bool login = false;
    for (int i = 1; i <= n; i++) {
        cin >> s;
        if (s == "login") {
            login = true;
        }
        if (s == "logout") {
            login = false;
        }
        if (s == "private" && !login) {
            errorNum++;
        }
    }
    cout << errorNum << '\n';
    return 0;
}

C - K-bonacci 

思路:先打个表,突然发现1e6的数据量,貌似可以不用找规律,直接模拟。那直接来,前k个数全是1,后面每个数都是其前k个数之和,那么只要动态维护中间k个数之和即可。最后注意一下,边界。此外由于计算过程存在减法,还需要注意一下取模运算导致的负数。

/*
Author Owen_Q
*/
#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 5;
const int MOD = 1e9;

#define ll long long

int a[N];

int main() {
    ios_base::sync_with_stdio(false), cin.tie(nullptr);
    int n,k;
    cin >> n >> k;
    if (n < k) {
        cout << 1 << endl;
    } else {
        int currentA = 0;
        for (int i = 0; i <= n; i++) {
            if (i < k) {
                a[i] = 1;
                currentA++;
            } else if (i == k) {
                a[i] = currentA;
            } else {
                currentA = (currentA  - a[i - k - 1] + currentA) % MOD;
                if (currentA < 0) {
                    currentA += MOD;
                }
                a[i] = currentA;
            }
        }
        cout << currentA << endl;
    }
    return 0;
}

D - Logical Filling

思路:看似策略题,其实又是一个模拟题。字符串输入包含o.?三个字符,字符?可以随便改变为字符o或者字符.。给定字符o的数量,并要求字符o不可以并排,求最终每个位可能的字符(若字符.和字符o均可则输出字符?)。根据字符o不可并排的策略,首先将字符o周围的字符?全都换为字符.之后判断连续字符?。针对偶数个连续?,则最多有一半数量为o,且这些o的位置不一定。针对奇数个连续?,则最多有一半还多一个数量为o,但这些o的位置一定,o.相隔分布,需要维护一下最多和最少o的场景下?的替换策略。最后判断一下若最多或最小数量更好匹配题意,则直接输出维护的特定场景下?替换策略即可,否则仅需要将o周围的?替换为.即可

/*
Author Owen_Q
*/
#include <bits/stdc++.h>

using namespace std;

const int N = 1e6 + 5;
const int MOD = 1e9;

#define ll long long


int main() {
    ios_base::sync_with_stdio(false), cin.tie(nullptr);
    int n, k;
    string s;
    cin >> n >> k >> s;
    string x = s;
    string xMax = s;
    string xMin = s;
    int countOMax = 0;
    int countOMin = 0;
    int agentQ = 0;
    for (int i = 0; i < n; i++) {
        if (s[i] == '?') {
            if ((i - 1 >= 0 && s[i - 1] == 'o') || (i + 1 < n && s[i + 1] == 'o')) {
                x[i] = '.';
                xMax[i] = '.';
                xMin[i] = '.';
            } else {
                agentQ++;
                xMin[i] = '.';
            }
        } else {
            if (agentQ > 0) {
                if (agentQ % 2 == 0) {
                    countOMax += agentQ / 2;
                    agentQ = 0;
                } else {
                    countOMax = countOMax + agentQ / 2 + 1;
                    int nowPos = i - 1;
                    while (agentQ > 0) {
                        if (x[nowPos] == '?') {
                            if (agentQ % 2 != 0) {
                                xMax[nowPos] = 'o';
                            } else {
                                xMax[nowPos] = '.';
                            }
                            agentQ--;
                        }
                        nowPos--;
                    }
                }
            }
            if (s[i] == 'o') {
                countOMax++;
                countOMin++;
            }
        }
    }
    if (agentQ > 0) {
        if (agentQ % 2 == 0) {
            countOMax += agentQ / 2;
        } else {
            countOMax = countOMax + agentQ / 2 + 1;
            int nowPos = n - 1;
            while (agentQ > 0) {
                if (x[nowPos] == '?') {
                    if (agentQ % 2 != 0) {
                        xMax[nowPos] = 'o';
                    } else {
                        xMax[nowPos] = '.';
                    }
                    agentQ--;
                }
                nowPos--;
            }
        }
    }
    if (countOMax == k) {
        cout << xMax << '\n';
    } else if (countOMin == k) {
        cout << xMin << '\n';
    } else {
        cout << x << '\n';
    }
    return 0;
}

E - Reachable Set 

思路:图论题,给定一个无向图,针对每一个有序节点k,判断需要至少删除多少个节点,能使节点1仅可达前k个节点。由于节点有序,不如直接将无线图转化为从小节点指向大节点的有向图。

这题主要要解两个问题,一是删除节点数量问题,二是可达性问题。删除节点数量其实倒是很容易判断。针对每个节点,将其后续节点全都删掉,即可断连。每次针对下个节点,再将下个节点加回,并将下个节点的后续节点删掉即可。维护一下删除的节点,即可知道所需删除的数量。而针对可达性问题就会比较麻烦。要判断前k个节点是否连通,连通性问题毫无疑问想到并查集。首先先把并查集的板子打上。但是肯定不能针对每个节点都一次遍历所有前k个节点,就需要剪枝了。首先第一步,不难发现,如果每次要遍历的节点在待删除列表里,那么其一定是可以连通的,就不需要再进行连通性判断了。那么只需要单独维护一下需要特殊判断的节点列表。此外,由于待删除列表存在很多添加和删除的操作,因此用数组来维护判断节点是否需要删除,然后专门记个数即可。由于前面的节点一定会先于后面的节点进行操作,因此更新删除节点基于点的后续节点即可进行操作。而判断连通性时,增加的边也只需要关注前序节点即可,因为后续节点肯定当前是不联通的。由此,整个图可以维护成两个分别基于前序和后序的领接表。最后一点剪枝就是判断节点联通性的时候,当某个节点判断不连通时,可以短路掉后续要判断的节点,避免重复无效判定。

/*
Author Owen_Q
*/
#include <bits/stdc++.h>

using namespace std;

const int N = 2e5 + 5;

#define ll long long

vector<int> e[N];
vector<int> de[N];


int pre[N];

bool deletedV[N];

int findx(int k) {
    if (k != pre[k]) {
        pre[k] = findx(pre[k]);
    }
    return pre[k];
}

void unionx(int a, int b) {
    int aa = findx(a);
    int bb = findx(b);
    if (aa > bb) {
        pre[aa] = bb;
    } else if (aa < bb) {
        pre[bb] = aa;
    }
}

int main() {
    ios_base::sync_with_stdio(false), cin.tie(nullptr);
    int n, m;
    cin >> n >> m;
    for (int i = 0; i < m; i++) {
        int u, v;
        cin >> u >> v;
        e[u].push_back(v);
        de[v].push_back(u);
    }
    for (int i = 1; i <= n; i++) {
        pre[i] = i;
    }
    set<int> toDeleteV;
    deletedV[1] = true;
    int deletedCount = 1;
    for (int i = 1; i <= n; i++) {
        if (deletedV[i]) {
            deletedV[i] = false;
            deletedCount--;
        } else {
            toDeleteV.insert(i);
        }
        const int eCount = e[i].size();
        for (int j = 0; j < eCount; j++) {
            if (deletedV[e[i][j]]) {
                continue;
            }
            deletedV[e[i][j]] = true;
            deletedCount++;
        }
        const int deCount = de[i].size();
        for (int j = 0; j < deCount; j++) {
            unionx(i, de[i][j]);
        }
        vector<int> toDeleteVdeleted;
        for (int needDeleteV: toDeleteV) {
            if (findx(1) == findx(needDeleteV)) {
                toDeleteVdeleted.push_back(needDeleteV);
            } else {
                break;
            }
        }
        for (int needDeleteV: toDeleteVdeleted) {
            toDeleteV.erase(needDeleteV);
        }
        if (toDeleteV.empty()) {
            cout << deletedCount << "\n";
        } else {
            cout << "-1\n";
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值