支持向量机思路

23 篇文章 0 订阅
12 篇文章 0 订阅
  1. 通过最大间隔原则导出SVM基本型:
    min ⁡ w , b 1 2 ∣ ∣ w ∣ ∣ 2 \min\limits_{w,b}\frac{1}{2}||w||^2 w,bmin21w2
    s . t .    y i ( w T x i + b ) ≥ 1 , i = 1 , . . . , m s.t. ~~y_i(w^Tx_i+b)\geq1,i=1,...,m s.t.  yi(wTxi+b)1,i=1,...,m
    此问题为凸二次规划问题,可以利用常规优化包计算。
    但是基于两个原因,一般利用其对偶问题求解。第一,对偶问题更容易求解,第二,方便利用核函数扩展到非线性划分。

  2. 通过拉格朗日乘子法合并约束条件:
    拉格朗日函数:
    L ( w , b , α ) = 1 2 ∣ ∣ w ∣ ∣ 2 + ∑ i = 1 m α i ( 1 − y i ( w T x i + b ) ) L(w,b,\alpha)=\frac{1}{2}||w||^2+\sum\limits_{i=1}^m\alpha_i(1-y_i(w^Tx_i+b)) L(w,b,α)=21w2+i=1mαi(1yi(wTxi+b))

  3. 构造拉格朗日函数下界(最优值下界),对偶函数:
    Γ ( α i ) = min ⁡ w , b L ( w , b , α ) \Gamma(\alpha_i)=\min\limits_{w,b}L(w,b,\alpha) Γ(αi)=w,bminL(w,b,α)
    w , b w,b w,b求导可得:
    Γ ( α i ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i T x j \Gamma(\alpha_i)=\sum\limits_{i=1}^m\alpha_i -\frac{1}{2}\sum\limits_{i=1}^m\sum\limits_{j=1}^m\alpha_i\alpha_jy_iy_jx_i^Tx_j Γ(αi)=i=1mαi21i=1mj=1mαiαjyiyjxiTxj
    此时考虑最大上界 max ⁡ α i Γ ( α i ) \max\limits_{\alpha_i}\Gamma(\alpha_i) αimaxΓ(αi),即拉格朗日函数的极大极小问题:
    max ⁡ α i min ⁡ w , b L ( w , b , α ) = max ⁡ α i Γ ( α i ) \max\limits_{\alpha_i}\min\limits_{w,b}L(w,b,\alpha)=\max\limits_{\alpha_i}\Gamma(\alpha_i) αimaxw,bminL(w,b,α)=αimaxΓ(αi)
    可得对偶最优化问题:
    min ⁡ α i Γ ( α i ) = min ⁡ α i 1 2 ∑ i = 1 m ∑ j = 1 m α i α j y i y j x i T x j − ∑ i = 1 m α i \min\limits_{\alpha_i}\Gamma(\alpha_i)=\min\limits_{\alpha_i} \frac{1}{2}\sum\limits_{i=1}^m\sum\limits_{j=1}^m\alpha_i\alpha_jy_iy_jx_i^Tx_j -\sum\limits_{i=1}^m\alpha_i αiminΓ(αi)=αimin21i=1mj=1mαiαjyiyjxiTxji=1mαi
    s . t .    ∑ i = 1 m α i y i = 0 s.t.~~\sum\limits_{i=1}^m\alpha_iy_i=0 s.t.  i=1mαiyi=0
             α i ≥ 0 ~~~~~~~~\alpha_i\geq0         αi0
             i = 1 , . . . , m ~~~~~~~~i=1,...,m         i=1,...,m
    求得最优解 α ∗ \alpha^* α后:
    f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx+b
    w = ∑ i = 1 m α i ∗ y i x i w=\sum\limits_{i=1}^m\alpha_i^*y_ix_i w=i=1mαiyixi
    b = 1 y s − ∑ i = 1 m α i ∗ y i x i T x s b=\frac{1}{y_s}-\sum\limits_{i=1}^m\alpha_i^*y_ix_i^Tx_s b=ys1i=1mαiyixiTxs
    s s s为任意支持向量。

  4. 对偶问题与原问题的等价条件:
    当原问题为凸优化问题,即 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)为凸函数, h ( x ) h(x) h(x)为仿射函数,且可行域中至少有一点使不等式严格成立,则满足等价条件。

  5. w ∗ , b ∗ , α ∗ w^*,b^*, \alpha^* w,b,α 分别为原始问题和对偶问题的解的充分必要条件是满足KKT条件(求解过程):
    ∇ w L ( w ∗ , b ∗ , α ∗ ) = 0 \nabla_wL(w^*,b^*, \alpha^*)=0 wL(w,b,α)=0
    ∇ b L ( w ∗ , b ∗ , α ∗ ) = 0 \nabla_bL(w^*,b^*, \alpha^*)=0 bL(w,b,α)=0
    ∇ α L ( w ∗ , b ∗ , α ∗ ) = 0 \nabla_\alpha L(w^*,b^*, \alpha^*)=0 αL(w,b,α)=0
    α i ∗ ≥ 0 \alpha_i^*\geq0 αi0
    y i ( w ∗ T x i + b ∗ ) − 1 ≥ 0 y_i(w^*{^T}x_i+b^*)-1\geq0 yi(wTxi+b)10
    α i ( y i ( w ∗ T x i + b ∗ ) − 1 ) = 0 \alpha_i(y_i(w^*{^T}x_i+b^*)-1)=0 αi(yi(wTxi+b)1)=0
    i = 1 , . . . , m i=1,...,m i=1,...,m
    注意不同教材对KKT条件定义不同,见李航《统计学习方法》,周志华《机器学习》。

  6. 注意,原始问题的等价拉格朗日函数极小极大问题为
    min ⁡ w , b max ⁡ α i L ( w , b , α ) \min\limits_{w,b}\max\limits_{\alpha_i}L(w,b,\alpha) w,bminαimaxL(w,b,α)
    所以有对偶一说。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值