一、支持向量机:
SVM 即支持向量机(Support Vector Machine), 是有监督学习算法的一种,用于解决数据挖掘或模式 识别领域中数据分类问题。
二、基本原理:
SVM 算法即寻找一个分类器使得超平面和最近的数 据点之间的分类边缘(超平面和最近的数据点之间的 间隔被称为分类边缘)最大,对于 SVM 算法通常认 为分类边缘越大,平面越优,通常定义具有“最大间 隔”的决策面就是 SVM 要寻找的最优解。并且最优 解对应两侧虚线要穿过的样本点,称为“支持向量”。 其处理的基本思路为:把问题转化为一个凸二次规划 问题,可以用运筹学有关思想进行求解:①目标函数 在线性 SVM 算法中,目标函数显然就是那个"分类间 隔",使分类间隔最大 ②约束条件 即决策面,通常需 要满足三个条件:1)确定决策面使其正确分类 2)决 策面在间隔区域的中轴线 3)如何确定支持向量 因此求解 SVM 问题即转化为求解凸二次规划的最优化问题。
支持向量机就是用来分割数据点那个分割面,他的位置是由支持向量确定的(如果支持 向量发生了变化,往往分割面的位置也会随之改变), 因此这个面就是一个支持向量确定的 分类器即支持向量机。
线性可分数据的二值分类机理:系统随机产生一个超平面并移动它,直到训练集中属于不同类别的样本点正好位于该超平面的两侧。显然,这种机理能够解决线性分类问题,但不能够保证产生的超平面是最优的。支持向量机建立的分类超平面能够在保证分类精度的同时, 使超平面两侧的空白区域最大化,从而实现对线性可分问题的最优分类。
SVM 的主要思想是:建立一个最优决策超平面,使得该平面两侧距平面最近的两类样 本之间的距离最大化,从而对分类问题提供良好的泛化力(推广能力)
“支持向量”:则是指训练集中的某些训练点,这些点最靠近分类决策面,是最难分类的数据点。
SVM:它是一种有监督(有导师)学习方法,即已知训练点的类别,求训练点和类别
之间的对应关系,以便将训练集按照类别分开,或者是预测新的训练点所对应的类别。