欧几里得(GCD)算法正确性证明,LCM正确性证明

欧几里得算法要解决的是求两个数最大公约数的问题。

gcd(a,b) = gcd(b,a%b)

这个算法的过程可以举个例子来展示,如果我要求168和44的最大公约数,用欧几里得算法可以这样求:

168=44*3+32

44=32*1+12

32=12*2+8

12=8*1+4

8=4*2+0

最终这个4就是最大公约数

证明gcd也就是要证明gcd(a,b) = gcd(b,a%b),需要注意的是,使用这个公式的前提是a>=b

a能被表示成 a = x*b + r ,则r = a % b

1.假设d是a,b的公约数,也就是d|a(|表示a能被d整除),b|d,根据r = a - x * b就能得到 r|d。因为a和b都能被整除,那么将等式两边同除d,右边得到的结果一定是是整数,所以d|r。因此d是(b,a%b)的公约数,证明了上面等式的充分性

2.假设d是b,a%b的公约数,则d|b,d|r,因为a = x * b + r,所以a|d,证明了必要性

由上证明可知,一个数如果是a,b的公约数,那么他一定是b,a%b的公约数。所以gcd(a,b)的公约数和gcd(b,a%b)的公约数是相等的,所以其最大公约数也一定相同

在a,b中,当b等于0,那么a,0的最大公约数就是a(0能被任何非0 的数整除,所以其公约数当然就包含a了)

证明完毕

多个数的最大公因数

我们知道了利用辗转相除法来计算两个数的最大公因数,如果我们有个数让我们求最大公因数怎么办?

假设现在让求(27090,21672,11352,8127)的最大公因数

1.先求出gcd(27090,21672) = 5418,我们既然知道了这两个数的最大公因数,那么即使有更多的数需要求,他们的最大公因数也不可能大于5418了,我们继续拿5418与剩余的数求最大公因数,因数的因数一定是原来那个数的因数。

2.(11352,5418) = 258

3.(8127,258) = 129

所以最终这些数的最大公因数是129

lcm(a,b) = a*b/gcd(a,b)

那么这个公式又是如何得来的呢?

我们先假设a和b的最小公倍数为m,假设其另外一个公倍数为m',则m|m'。

为什么?

首先我们能得到这样的公式m' = mq + r(q>0,r>=0)

因为a | m , b | m , a | m' , b | m'

则 a*a' = m, a * a'' = m',b*b' = m,b*b'' = m'

那么m' = mq + r就可以转换成 a (a'' - a'q) = r 或者 b(b'' - b'q) = r

因为a'' - a'q和b''-b'q肯定是整数(因为a'' , a',q都是整数),所以最终a|r,b|r,也就是说r是a和b的公倍数。

但是因为m是最小公倍数,m' = mq+r 这个公式最终的结果r肯定是小于m的,所以r只能为0。

最终就变成了m‘ = mq,也就是说,a和b的任意一个公倍数都是其最小公倍数的倍数

那么a*b = gcd(a,b) * m从何而来?

首先a*b的结果一定是a和b的公倍数,肯定就能得到a*b = mq。

现在就需要证明这个q就是最大公因子。我们假设现在a和b存在公因子q'

得到 : a/q'  *  b/q' = m/q'  *  q/q'    转换为  q' * (a * b / m) = q / q'

因为a*b/m得到的肯定是整数,所以q/q'肯定也是整数,所以q'|q,也就是说a和b的任意一个因数都能整除q,就说明了q是最大公因数

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值