「基于模型预测的转速三矢量预测控制方法:采样、选择和优化」 「利用扇区采样和最优电压矢量组合的时间计算方法」 「应用价值函数优化选取最佳电压矢量组合的模型预测控制」 「使用线性ESO观测负载扰动

模型预测转速三矢量预测控制。
采样基于扇区,选择最优电压矢量,与相邻有效电压矢量组合,分别计算时间。
通过价值函数寻优选择最优电压矢量组合。
采用线性ESO观测负载扰动

ID:48500724612401336

永磁同步电机控制


模型预测转速三矢量预测控制(Model Predictive Torque Control, MPTC)是一种先进的电机控制策略,可用于提高电机系统的动态性能和稳态性能。在MPTC中,通过对电机系统进行建模和预测,选择合适的控制策略来实现所需的电机转速。

MPTC采用采样基于扇区的方法来选择最优的电压矢量。在每个控制周期内,将电机相电流转换到α-β坐标系,然后进行电流采样。通过将电流矢量根据扇区化的方式映射到合适的电压矢量空间,选择最优的电压矢量来控制电机转速。

为了进一步优化控制策略,MPTC使用了相邻有效电压矢量的组合。通过对相邻有效电压矢量的时间计算,可以选择最优的电压矢量组合来实现更精确的控制。这种组合可以在每个控制周期内实时计算,并且可以根据当前电机状态进行调整。

为了评估每种电压矢量组合的优劣,MPTC采用了价值函数进行寻优。价值函数根据给定的性能指标,如转速偏差、转矩波动等进行定义,并根据当前电机状态和控制目标进行实时计算。通过比较不同电压矢量组合的价值函数值,可以选择具有最优性能的电压矢量组合进行控制。

此外,MPTC还采用了线性扩展状态观测器(Linear Extended State Observer, ESO)来实时估计负载扰动。负载扰动是电机系统中的常见问题,会导致转速偏差和转矩波动。通过使用线性ESO,可以实时估计负载扰动并进行补偿,从而提高控制系统的鲁棒性和稳定性。

总结起来,模型预测转速三矢量预测控制是一种先进的电机控制策略,通过建模和预测电机系统,选择最优的电压矢量组合来实现精确的转速控制。该控制策略采用了基于扇区的采样方法、相邻有效电压矢量组合选择和价值函数寻优,同时结合线性ESO进行负载扰动补偿,从而提高电机系统的性能和稳定性。

【相关代码,程序地址】:http://fansik.cn/724612401336.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值