递归分治 --- 算法思想介绍

递归分治 — 算法思想介绍


一.递归分治的基本概念

递归的概念:直接或间接的调用自身的算法称为递归算法.用函数自身给出定义的函数成为递归函数.
分治法的思想:将一个难以直接解决的大问题分割成一些规模较小的相同问题,以便各个击破,即分而治之.

如果原问题可分割成k个子问题, 1<k<=n, 且这些子问题都可解,并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的.有分治法产生的子问题往往是原问题的较小模式,这为使用递归技术提供了方便.在这种情况下,反复利用分治手段,可以使子问题与原问题类型一致而其规模不断缩小,最终是子问题缩小到容易求出其解,由此自然引出递归算法.

分治与递归像一对孪生兄弟,经常同时应用在算法设计中,并由此产生许多高效算法.

二.递归分治算法的适用条件

我们下面利用几个例子,来看一看递归分治算法什么情况下能够使用,以及应该如何使用.

从我们耳熟能详的阶乘函数和斐波那契数列开始,介绍一下递归思想:
阶乘函数:可递归地定义为:

  • n! = 0, n = 1 (此为边界条件)
  • n! = n*(n-1)!, n > 0 (此为递归方程)

边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果.

int Factorial(int n)
{
	if(n == 0) return 1;
	else return n*Factorial(n-1);
}

Fibonacci数列:无穷数列1,1,2,3,5,8,13,21,34,55,……,称为Fibonacci数列。它可以递归地定义为:

  • F(n) = 0, n = 0
  • F(n) = 1, n = 1
  • F(n) = F(n-1) + F(n-2), n > 1
int fibonacci(int n)
 {
     if (n <= 1) return 1;
     return fibonacci(n-1)+fibonacci(n-2);
 }

阶乘函数和Fibonacci数列这两种递归可转换为非递归方式,但并不是所有递归都可以转换.

认识了简单的递归之后,我们举一个分治算法的例子 — 二分查找:
已知不重复且从小到大排列的m个整数的数组A[1…m],要求找到一个下标i,使得A[i] = x, 找不到返回0;

基本思想:
将m个元素分成个数大致相同的两半,取A[mid]与x作比较。

  • x = A[mid], 算法终止
  • x < A[mid], 在数组的左半部继续搜索
  • x > A[mid], 在数组的右半部继续搜索
int BinarySearch(int A[], int x, int l, int r)
{
	while(l <= r)
	{
		int mid = (l+r) / 2;
		if(A[mid] == x) return mid;
		else if(x < A[mid])
			r = mid - 1;		
		else
			l = mid + 1;
	}
	return 0;
}

分治法的适用条件(其实就相当于是递归算法的适用条件了,因为分治法实现起来大部分是使用了递归):

  • 该问题的规模缩小到一定的程度就可以容易地解决;
  • 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质
  • 利用该问题分解出的子问题的解可以合并为该问题的解
  • 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题

最后一条这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好.

注意:人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好.

三.递归分治算法总结

递归分治算法的模板伪代码:

Divide-and-Conquer(P)
	if(|P|<=n0) Adhoc(P)   //若问题规模小于阈值,直接计算   
	divide P into smaller subinstances P1, P2, ... , Pk   //否则,将大问题划分为若干个小问题
	for(i = 1; i<= k; i++)		//依次计算每个小问题
		yi = Divide-and-Conquer(Pi); 
	return Merge(y1, y2, ... , yk);	//合并每个小问题的解,得到最终答案

设问题P(n)分解成k个规模为n/m的子问题,阀值n0=1,求解P(1)的时间耗费为O(1).将P(n)分解及合并成P(n)的解的时间为f(n),则分治法解规模为n的问题的最坏时间复杂性函数T(n)满足:

  • T(n) = T(1) = O(1)
  • ​ = T(n) = kT(n/m) + f(n)

答案很复杂,总之递归算法对时间空间复杂度要求较高.
后面我会针对具体的几个算法题来应用递归分治思想解决,欢迎继续阅读.

参考毕方明老师《算法设计与分析》课件.

欢迎大家访问个人博客网站—乔治的编程小屋,一起体验一下养成式程序员的打怪升级之旅吧!

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值