在有些机器学习程序中我们想要指定某些操作执行的依赖关系,这时我们可以使用tf.control_dependencies()来实现。
control_dependencies(control_inputs)返回一个控制依赖的上下文管理器,使用with关键字可以让在这个上下文环境中的操作都在control_inputs 执行。
with g.control_dependencies([a, b, c]):
# `d` and `e` will only run after `a`, `b`, and `c` have executed.
d = ...
e = ...
可以嵌套control_dependencies 使用
with g.control_dependencies([a, b]):
# Ops constructed here run after `a` and `b`.
with g.control_dependencies([c, d]):
# Ops constructed here run after `a`, `b`, `c`, and `d`.
可以传入None 来消除依赖:
with g.control_dependencies([a, b]):
# Ops constructed here run after `a` and `b`.
with g.control_dependencies(None):
# Ops constructed here run normally, not waiting for either `a` or `b`.
with g.control_dependencies([c, d]):
# Ops constructed here run after `c` and `d`, also not waiting
# for either `a` or `b`.
注意:
控制依赖只对那些在上下文环境中建立的操作有效,仅仅在context中使用一个操作或张量是没用的
# WRONG
def my_func(pred, tensor):
t = tf.matmul(tensor, tensor)
with tf.control_dependencies([pred]):
# The matmul op is created outside the context, so no control
# dependency will be added.
return t
# RIGHT
def my_func(pred, tensor):
with tf.control_dependencies([pred]):
# The matmul op is created in the context, so a control dependency
# will be added.
return tf.matmul(tensor, tensor)
例子:
在训练模型时我们每步训练可能要执行两种操作,op a, b 这时我们就可以使用如下代码:
with tf.control_dependencies([a, b]):
c= tf.no_op(name='train')#tf.no_op;什么也不做
sess.run(c)
在这样简单的要求下,可以将上面代码替换为:
c= tf.group([a, b])
sess.run(c)
本文介绍如何使用TensorFlow中的tf.control_dependencies()来指定操作间的执行顺序。通过具体示例,展示了如何确保某些操作在其他操作之前执行,这对于训练复杂的机器学习模型尤为重要。
2110

被折叠的 条评论
为什么被折叠?



