Jqlender
码龄6年
  • 365,563
    被访问
  • 155
    原创
  • 17,152
    排名
  • 34
    粉丝
  • 0
    铁粉
关注
提问 私信
  • 加入CSDN时间: 2016-02-21
博客简介:

Jq的博客

查看详细资料
  • 4
    领奖
    总分 937 当月 5
个人成就
  • 获得99次点赞
  • 内容获得64次评论
  • 获得307次收藏
创作历程
  • 14篇
    2022年
  • 52篇
    2021年
  • 29篇
    2019年
  • 62篇
    2018年
成就勋章
TA的专栏
  • 机器学习
    13篇
  • python
    26篇
  • angular新版
    13篇
  • pandas
    1篇
  • typescript
    3篇
  • influxdb
    1篇
  • reactNative
    1篇
  • javascript
    21篇
  • webpack
    14篇
  • ES6
    7篇
  • react
    4篇
  • 微信小程序
    7篇
  • babel
    1篇
  • css
    14篇
  • 浏览器兼容
    5篇
  • vue
    12篇
  • 前端优化
    2篇
  • git
    3篇
  • 面试
    7篇
  • 编辑器
    2篇
  • node
    8篇
  • win10调整亮度
    1篇
  • electron
    4篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow图像处理数据分析
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

sess.run(tf.global_variables_initializer()) 做了什么

当我们训练自己的神经网络的时候,都会加上一句sess.run(tf.global_variables_initializer()),官方解释是初始化模型参数。那么它到底做了些什么?global_variables_initializer 返回一个用来初始化 计算图中 所有global variable的 op。函数中调用了variable_initializer() 和 global_variables()global_variables() 返回一个 Variable list ,里面保存
原创
发布博客 2022.04.04 ·
1213 阅读 ·
0 点赞 ·
0 评论

tf.control_dependencies()函数用法

在有些机器学习程序中我们想要指定某些操作执行的依赖关系,这时我们可以使用tf.control_dependencies()来实现。tf.control_dependencies(control_inputs)作用: 用来控制计算流图的,也就是给图中的某些计算指定顺序。有的时候我们想要指定某些操作执行的依赖关系,比如想要让参数先更新,然后再获取参数更新的值等。返回: 会返回一个控制依赖的上下文管理器,使用了with关键字就可以让在这个上下文环境中的操作都在control_inputs 执行理解意思:代
原创
发布博客 2022.04.03 ·
674 阅读 ·
0 点赞 ·
0 评论

numpy.power()

numpy.power(x,y)作用: 计算x的y次方import numpy as npprint(np.power(2, [2,3,4])) #[ 4 8 16]print(np.power([2,3], [3,4])) # [ 8 81]x,y都为数字计算x的y次方,返回一个数字print(np.power(2, 3)) # 计算2的3次方 结果为8x为列表,y为数字计算x中每个元素的y次方,返回列表print(np.power([2,3,4], 3)) # 分
原创
发布博客 2022.03.04 ·
518 阅读 ·
1 点赞 ·
1 评论

numpy.lib.stride_tricks.as_strided() 高效切分数组

numpy.lib.stride_tricks.as_strided(x, shape=None, strides=None, subok=False, writeable=True)参数:x: 我们要分割的数组shape: 返回结果的形状shapestrides: 在数组X的基础上按照给的的strides来切割出给定的shape数组返回: 返回在X的基础上按照给的的 strides来切割出一个给定shape的新数组X = [[0,1,2],[3,4,5],[6,7,8]]A
原创
发布博客 2022.03.03 ·
341 阅读 ·
2 点赞 ·
1 评论

Python ndarray.strides用法

用法ndarray.strides: 在遍历数组时在每个维度上步进的字节元组a = np.array([[10,2,4],[3, 4,11]],dtype=np.int32)print(a.strides) #(12,4)print(a[:,1]) # [2 4]print(aq[:,1].strides) # (8,)stride, = aq[:,1].strides print(stride) # 8解释:1字节 = 8bitint32的1个值 = 4个字节数组a每行3个值
原创
发布博客 2022.03.03 ·
476 阅读 ·
0 点赞 ·
0 评论

详解python中的round()函数

round()round()是python自带的一个函数,用于数字的四舍五入。使用方法(环境python3)round(number,digits)参数:digits>0,四舍五入到指定的小数位digits=0, 四舍五入到最接近的整数digits<0 ,在小数点左侧进行四舍五入如果round()函数只有number这个参数,等同于digits=0四舍五入规则:要求保留位数的后一位<=4,则进位,如round(5.214,2)保留小数点后两位,结果是 5.21
原创
发布博客 2022.03.03 ·
7397 阅读 ·
7 点赞 ·
0 评论

python中的json

JSON 函数使用 JSON 函数需要导入 json 库:import json函数描述json.dumps将 Python 对象编码成 JSON 字符串json.dump(编码json数据)将python中的对象转化成json字符串,并存储到json文件中json.load(解码json数据)将文件中的JSON格式转换成Python字典json.loads解析一个有效的JSON字符串并将其转换为Python字典json.dumps把python对象
原创
发布博客 2022.02.23 ·
293 阅读 ·
0 点赞 ·
0 评论

tf.InteractiveSession()与tf.Session()

tf.InteractiveSession()tf.InteractiveSession():它能让你在运行图的时候,插入一些计算图,这些计算图是由某些操作(operations)构成的。这对于工作在交互式环境中的人们来说非常便利,比如使用IPython。tf.InteractiveSession()是一种交互式的session方式,它让自己成为了默认的session,也就是说用户在不需要指明用哪个session运行的情况下,就可以运行起来,这就是默认的好处。这样的话就是run()和eval()函数可以
原创
发布博客 2022.02.22 ·
151 阅读 ·
0 点赞 ·
0 评论

Python 面向对象

面向对象技术简介类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。数据成员:类变量或者实例变量, 用于处理类及其实例对象的相关的数据。方法重写:如果从父类继承的方法不能满足子类的需求,可以对其进行改写,这个过程叫方法的覆盖(override),也称为方法的重写。局部变量:定义在方法中的变量,只作用于当前实例的类。实例变
原创
发布博客 2022.02.22 ·
13 阅读 ·
0 点赞 ·
0 评论

tf.ConfigProto()详解

tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算参数:参数作用log_device_placement是否打印设备分配日志inter_op_parallelism_threads设置线程一个操作内部并行运算的线程数,比如矩阵乘法,如果设置为0,则表示以最优的线程数处理intra_op_parallelism_threads设置多个操作并行运算的线程数,比如 c = a + b,d = e + f . 可以并
原创
发布博客 2022.02.21 ·
993 阅读 ·
0 点赞 ·
0 评论

tf.concat()详解

tensorflow中用来拼接张量的函数tf.concat(),用法:tf.concat([tensor1, tensor2, tensor3,...], axis) t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] t3 = tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] t4 = tf.concat([t1, t2],
原创
发布博客 2022.02.21 ·
669 阅读 ·
0 点赞 ·
0 评论

angular创建组件命令

ng generate component example 生成组件带有模版ng generate component example -it 生成内联模版(不会单独生成html文件)ng generate directive my-directive - 生成一个新指令ng generate pipe my-pipe - 生成一个新管道ng generate service my-service - 生成一个新服务ng generate route my-route - 生成一个新路由ng g
原创
发布博客 2022.02.11 ·
807 阅读 ·
0 点赞 ·
0 评论

sess.run()详解

TensorFlow与我们正常的编程思维略有不同:先预定义一些操作/占位符构建graph,所有的操作op和变量都视为节点,TensorFlow中的语句不会立即执行;当构建完graph图后,需要在一个session会话中启动图,启动的第一步是创建一个Session对象。等到开启会话session的时候,才会执行session.run()中的语句。在执行session.run()时,tensorflow并不是计算了整个图,只是计算了与想要fetch的值相关的部分。创建session对象tf.com
原创
发布博客 2022.01.26 ·
4360 阅读 ·
4 点赞 ·
0 评论

tensorflow函数方法

tf.where(condition,x=None,y=None,name=None)作用:该函数的作用是根据condition,返回相对应的x或y,返回值是一个tf.bool类型的Tensor。若condition=True,则返回对应X的值,False则返回对应的Y值。import tensorflow as tfsess=tf.Session()A =tf.where(False,123,321)print(sess.run(A)) #321B=tf.where(True,123,32
原创
发布博客 2022.01.19 ·
15 阅读 ·
0 点赞 ·
0 评论

numpy数组的索引和切片

一维数组一维数组说明arr[1:]返回索引1到最后的数据(冒号前面是起,后面是止,冒号前面空,指最小0,后面放空就是到最后)arr[5:8返回索引5到索引8(不包含)的数据import numpy as nparr=np.arange(10)print(arr) # [0 1 2 3 4 5 6 7 8 9]print(arr[1:]) # [1 2 3 4 5 6 7 8 9] 返回索引1到最后的数据print(arr[5:8]) # [5 6 7] 返回索
原创
发布博客 2021.12.29 ·
789 阅读 ·
0 点赞 ·
0 评论

np.append()

np.append(arr, values, axis=None)作用: 为原始arr添加一些values返回值: 返回添加了values的新数组参数:arr:需要被添加values的数组values:添加到数组arr中的值(array_like,类数组)axis:可选参数,如果axis没有给出,那么arr,values都将先展平成一维数组。注:如果axis被指定了,那么arr和values需要有相同的shape,否则报错:ValueError: arrays must have same n
原创
发布博客 2021.12.29 ·
1601 阅读 ·
0 点赞 ·
0 评论

np.zeros(),np.empty()

np.zeros(shape, dtype=float, order=‘C’)返回值: 返回一个给定形状和类型的用0填充的数组参数:shape: 形状dtype:数据类型,可选参数,默认numpy.float64import numpy as nparray1 = np.zeros(5, np.float32) #生成包含5个元素的零一维数组,且各元素为float32print(array1, array1.shape, array1.dtype) # [0. 0. 0. 0. 0.]
原创
发布博客 2021.12.28 ·
1060 阅读 ·
1 点赞 ·
0 评论

python 列表(List)

1. len(list)返回元素个数 mylist = [10,20,30] print(len(mylist)) # 32.list.append(obj)作用: 用于在列表的末尾添加一个新的元素。返回值: 该方法无返回值,但是会修改原来的列表。mylist = [10,20,30]mylist.append(3)print(mylist) # [10, 20, 30, 3]mylist.append( [7,8,9] )print(mylist) #[10, 20, 30,
原创
发布博客 2021.12.23 ·
551 阅读 ·
0 点赞 ·
0 评论

numpy中的ndim、shape、dtype、astype

1.ndimndim返回的是数组的维度,返回的只有一个数,该数即表示数组的维度。print(np.random.rand(2).ndim) #1print(np.random.rand(2,1).ndim) # 22.shapeshape:表示各位维度大小的元组。返回的是一个元组。print(np.random.rand(2).shape) # (2,) 一维数组元组内只返回一个数print(np.random.rand(2,1).shape) # (2, 1) 二维数组元组内返
原创
发布博客 2021.12.22 ·
327 阅读 ·
0 点赞 ·
0 评论

numpy.random.rand、numpy.random.randn

numpy.random.rand(d0,d1,…,dn)返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1print(np.random.rand()) # 0.03675071889497428print(np.random.rand(2)) # [0.97657898 0.0022022 ]print(np.random.rand(3,1)) # [[1.24188965e-04] [9.42082540e-01] [5.96394499e-0
原创
发布博客 2021.12.21 ·
556 阅读 ·
0 点赞 ·
0 评论
加载更多