My solution to cs224n assignment1(3-4)

My solution

3.word2vec

(a)(b)(c)skip-gram的求导和负采样

这里写图片描述
这里写图片描述

  词向量模型有CBOW和skip-gram模型,注意这两个模型词向量做中间词和环境词往往不一样(虽然这样从理论上似乎并没有加强表达能力,但是实际操作来看又很有道理),这两个模型都有朴素神经网络形式。也都有两个优化,Hierarchy softmax(用logN个Huffman树上的二分类代替词向量的N分类降低时间复杂度)和负采样算法(除了增加正确答案的概率,还要降低错误答案的概率)。
  相对CBOW来说,skip-gram似乎更加合理一点,因为从损失函数形式上来看,CBOW相当于 F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值