cs224n assignment 1总结

看完cs224有段时间了,回头做下作业总结下。

官网:http://web.stanford.edu/class/cs224n/

里面有相关的资料可以下载。

1 Softmax (10 points)
    一个证明和一个实现:

我的实现:

np.exp(x) / np.sum(np.exp(x))

github上:

git上答案:
def softmax(x):
"""
Arguments:
    x -- A N dimensional vector or M x N dimensional numpy matrix.

    Return:
    x -- You are allowed to modify x in-place
    """
    orig_shape = x.shape

    if len(x.shape) > 1:
        # Matrix
        ### YOUR CODE HERE
        exp_minmax = lambda x: np.exp(x - np.max(x))
        denom = lambda x: 1.0 / np.sum(x)
        x = np.apply_along_axis(exp_minmax, 1, x)
        denominator = np.apply_along_axis(denom, 1, x)

        if len(denominator.shape) == 1:
            denominator = denominator.reshape((denominator.shape[0], 1))

        x = x * denominator
        ### END YOUR CODE
    else:
        # Vector
        ### YOUR CODE HERE
        x_max = np.max(x)
        x = x - x_max
        numerator = np.exp(x)
        denominator = 1.0 / np.sum(numerator)
        x = numerator.dot(denominator)
        ### END YOUR CODE

    assert x.shape == orig_shape
    return x

看了下这个帖子:https://www.aliyun.com/jiaocheng/524269.html,大致明白了。

apply_along_axis是执行一个函数,第一个参数是其函数,0/1对应行列,x即输入数据。

2 Neural Network Basics (30 points)

part a: 对sigmod函数求导

原函数:

求导:

part b: 求出softmax函数的交叉熵损失关于theta的导数。

softmax: 

交叉熵:

求导:

这块标记下,面试必考,手推导。贴个链接:
https://blog.csdn.net/qian99/article/details/78046329
我也要手推导下去。
part c:单隐层神经网络关于参数的导数。

         这块比较难了,重要的是一种思想,即前向过程的计算值,作为后向计算的中间值。建议看solid,吴恩达的视频这块将的非常好,一步一步推导的。包括矩阵形式的计算。
我记得一开始是看的国外一个知名的博客,Implementing a Neural Network from Scratch in Python – An Introduction。
https://blog.csdn.net/luoganttcc/article/details/63251234这个推导很详细。
part d:计算神经网络的参数个数

这里的1是偏执项。

part e: 完成sigmod激活函数以及其梯度:

sigmod function :
return s = 1.0 / (1 + np.exp(-x))

	sigmod gradient:
return s * (1 - s)

part f:完成一个梯度检查器:

# First implement a gradient checker by filling in the following functions
def gradcheck_naive(f, x):
    """ Gradient check for a function f.

    Arguments:
    f -- a function that takes a single argument and outputs the
         cost and its gradients
    x -- the point (numpy array) to check the gradient at
    """

    rndstate = random.getstate()
    random.setstate(rndstate)
    fx, grad = f(x) # Evaluate function value at original point
    h = 1e-4        # Do not change this!

    # Iterate over all indexes in x
    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        ix = it.multi_index

        # Try modifying x[ix] with h defined above to compute
        # numerical gradients. Make sure you call random.setstate(rndstate)
        # before calling f(x) each time. This will make it possible
        # to test cost functions with built in randomness later.

        ### YOUR CODE HERE:
        x[ix] += h

        random.setstate(rndstate)
        new_f1 = f(x)[0]

        x[ix] -= 2*h

        random.setstate(rndstate)
        new_f2 = f(x)[0]

        x[ix] += h

        numgrad = (new_f1 - new_f2) / (2 * h)
        ### END YOUR CODE

        # Compare gradients
        reldiff = abs(numgrad - grad[ix]) / max(1, abs(numgrad), abs(grad[ix]))
        if reldiff > 1e-5:
            print("Gradient check failed.")
            print("First gradient error found at index %s" % str(ix))
            print("Your gradient: %f \t Numerical gradient: %f" % (grad[ix], numgrad)) 
            return

        it.iternext() # Step to next dimension

print("Gradient check passed!")

即(f(x+h)-f(x-h))/2h来计算梯度,然后与计算的梯度值进行对比。
np.nditer():numpy迭代器
part g: 写出只有一个隐层且激活函数为sigmoid的神经网络前向和后向传播代码

def forward_backward_prop(data, labels, params, dimensions):
    """
    Forward and backward propagation for a two-layer sigmoidal network

    Compute the forward propagation and for the cross entropy cost,
    and backward propagation for the gradients for all parameters.

    Arguments:
    data -- M x Dx matrix, where each row is a training example.
    labels -- M x Dy matrix, where each row is a one-hot vector.
    params -- Model parameters, these are unpacked for you.
    dimensions -- A tuple of input dimension, number of hidden units
                  and output dimension
    """

    ### Unpack network parameters (do not modify)
    ofs = 0
    Dx, H, Dy = (dimensions[0], dimensions[1], dimensions[2])

    W1 = np.reshape(params[ofs:ofs+ Dx * H], (Dx, H))
    ofs += Dx * H
    b1 = np.reshape(params[ofs:ofs + H], (1, H))
    ofs += H
    W2 = np.reshape(params[ofs:ofs + H * Dy], (H, Dy))
    ofs += H * Dy
    b2 = np.reshape(params[ofs:ofs + Dy], (1, Dy))

    ### YOUR CODE HERE: forward propagation
    h = sigmoid(np.dot(data,W1) + b1)
    yhat = softmax(np.dot(h,W2) + b2)
    ### END YOUR CODE

    ### YOUR CODE HERE: backward propagation
    cost = np.sum(-np.log(yhat[labels==1])) / data.shape[0]

    d3 = (yhat - labels) / data.shape[0]
    gradW2 = np.dot(h.T, d3)
    gradb2 = np.sum(d3,0,keepdims=True)

    dh = np.dot(d3,W2.T)
    grad_h = sigmoid_grad(h) * dh

    gradW1 = np.dot(data.T,grad_h)
    gradb1 = np.sum(grad_h,0)
    ### END YOUR CODE

    ### Stack gradients (do not modify)
    grad = np.concatenate((gradW1.flatten(), gradb1.flatten(),
        gradW2.flatten(), gradb2.flatten()))

    return cost, grad

3 word2vec (40 points + 2 bonus)
part a: 求解损失函数对Uc的梯度值。
softmax在word2vec中的函数为:

该word2vec使用skip-gram模型,即由中心词预测上下文词,vc为中心词的词向量,uo为上下文词的词向量。uw为输出词向量中每个单词对应的词向量。
损失函数为:

其中U = [u1,u2,…, uW]是所有词向量构成的矩阵。
其梯度为:

part b: 计算损失函数对输出词向量的梯度。

part c: 使用为预测的向量υc使用负采样损失的计算方式,并且设定期望输出词为o。假设获得了K个负样例(词),并且被记为1,…,K,分别作为这些样例的标签(o∉1,…,K)。那么,对于一个给定的词o,将其输出向量记作μo。这里,负采样损失函数如下:

分别计算其梯度值:

这里是重点,代码中比较难理解的部分,即negSamplingCostAndGradient()函数的实现。负采样的速度是非常快的,每次计算是只有k个值。

part d:计算所有梯度

part e: 完成q3 word2vec.py

#!/usr/bin/env python

import numpy as np
import random

from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q2_sigmoid import sigmoid, sigmoid_grad

def normalizeRows(x):
    """ Row normalization function

    Implement a function that normalizes each row of a matrix to have
    unit length.
    """

    ### YOUR CODE HERE
    denom = np.apply_along_axis(lambda x: np.sqrt(x.T.dot(x)), 1, x)
    x /= denom[:, None]
    ### END YOUR CODE

    return x


def test_normalize_rows():
    print("Testing normalizeRows...") 
    x = normalizeRows(np.array([[3.0, 4.0], [1, 2]]))
    print(x) 
    ans = np.array([[0.6, 0.8], [0.4472136, 0.89442719]])
    assert np.allclose(x, ans, rtol=1e-05, atol=1e-06)
    print("") 


def softmaxCostAndGradient(predicted, target, outputVectors, dataset):
    """ Softmax cost function for word2vec models

    Implement the cost and gradients for one predicted word vector
    and one target word vector as a building block for word2vec
    models, assuming the softmax prediction function and cross
    entropy loss.

    Arguments:
    predicted -- numpy ndarray, predicted word vector (\hat{v} in
                 the written component)
    target -- integer, the index of the target word
    outputVectors -- "output" vectors (as rows) for all tokens
    dataset -- needed for negative sampling, unused here.

    Return:
    cost -- cross entropy cost for the softmax word prediction
    gradPred -- the gradient with respect to the predicted word
           vector
    grad -- the gradient with respect to all the other word
           vectors

    We will not provide starter code for this function, but feel
    free to reference the code you previously wrote for this
    assignment!
    """

    ### YOUR CODE HERE
    ## Gradient for $\hat{\bm{v}}$:

    #  Calculate the predictions:
    vhat = predicted
    z = np.dot(outputVectors, vhat)
    preds = softmax(z)

    #  Calculate the cost:
    cost = -np.log(preds[target])

    #  Gradients
    z = preds.copy()
    z[target] -= 1.0

    grad = np.outer(z, vhat)
    gradPred = np.dot(outputVectors.T, z)
    ### END YOUR CODE

    return cost, gradPred, grad


def getNegativeSamples(target, dataset, K):
    """ Samples K indexes which are not the target """

    indices = [None] * K
    for k in range(K):
        newidx = dataset.sampleTokenIdx()
        while newidx == target:
            newidx = dataset.sampleTokenIdx()
        indices[k] = newidx
    return indices


def negSamplingCostAndGradient(predicted, target, outputVectors, dataset,
                               K=10):
    """ Negative sampling cost function for word2vec models

    Implement the cost and gradients for one predicted word vector
    and one target word vector as a building block for word2vec
    models, using the negative sampling technique. K is the sample
    size.

    Note: See test_word2vec below for dataset's initialization.

    Arguments/Return Specifications: same as softmaxCostAndGradient
    """

    # Sampling of indices is done for you. Do not modify this if you
    # wish to match the autograder and receive points!
    indices = [target]
    indices.extend(getNegativeSamples(target, dataset, K))

    ### YOUR CODE HERE
    grad = np.zeros(outputVectors.shape)
    gradPred = np.zeros(predicted.shape)
    cost = 0
    z = sigmoid(np.dot(outputVectors[target], predicted))

    cost -= np.log(z)
    grad[target] += predicted * (z - 1.0)
    gradPred += outputVectors[target] * (z - 1.0)

    for k in range(K):
        samp = indices[k + 1]
        z = sigmoid(np.dot(outputVectors[samp], predicted))
        cost -= np.log(1.0 - z)
        grad[samp] += predicted * z
        gradPred += outputVectors[samp] * z
    ### END YOUR CODE

    return cost, gradPred, grad


def skipgram(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
             dataset, word2vecCostAndGradient=softmaxCostAndGradient):
    """ Skip-gram model in word2vec

    Implement the skip-gram model in this function.

    Arguments:
    currrentWord -- a string of the current center word
    C -- integer, context size
    contextWords -- list of no more than 2*C strings, the context words
    tokens -- a dictionary that maps words to their indices in
              the word vector list
    inputVectors -- "input" word vectors (as rows) for all tokens
    outputVectors -- "output" word vectors (as rows) for all tokens
    word2vecCostAndGradient -- the cost and gradient function for
                               a prediction vector given the target
                               word vectors, could be one of the two
                               cost functions you implemented above.

    Return:
    cost -- the cost function value for the skip-gram model
    grad -- the gradient with respect to the word vectors
    """

    cost = 0.0
    gradIn = np.zeros(inputVectors.shape)
    gradOut = np.zeros(outputVectors.shape)

    ### YOUR CODE HERE
    cword_idx = tokens[currentWord]
    vhat = inputVectors[cword_idx]

    for j in contextWords:
        u_idx = tokens[j]
        c_cost, c_grad_in, c_grad_out = word2vecCostAndGradient(vhat, u_idx, outputVectors, dataset)
        cost += c_cost
        gradIn[cword_idx] += c_grad_in
        gradOut += c_grad_out
    ### END YOUR CODE

    return cost, gradIn, gradOut


def cbow(currentWord, C, contextWords, tokens, inputVectors, outputVectors,
         dataset, word2vecCostAndGradient=softmaxCostAndGradient):
    """CBOW model in word2vec

    Implement the continuous bag-of-words model in this function.

    Arguments/Return specifications: same as the skip-gram model

    Extra credit: Implementing CBOW is optional, but the gradient
    derivations are not. If you decide not to implement CBOW, remove
    the NotImplementedError.
    """

    cost = 0.0
    gradIn = np.zeros(inputVectors.shape)
    gradOut = np.zeros(outputVectors.shape)

    ### YOUR CODE HERE
    predicted_indices = [tokens[word] for word in contextWords]
    predicted_vectors = inputVectors[predicted_indices]
    predicted = np.sum(predicted_vectors, axis=0)
    target = tokens[currentWord]
    cost, gradIn_predicted, gradOut = word2vecCostAndGradient(predicted, target, outputVectors, dataset)
    for i in predicted_indices:
        gradIn[i] += gradIn_predicted
    ### END YOUR CODE

    return cost, gradIn, gradOut


#############################################
# Testing functions below. DO NOT MODIFY!   #
#############################################

def word2vec_sgd_wrapper(word2vecModel, tokens, wordVectors, dataset, C,
                         word2vecCostAndGradient=softmaxCostAndGradient):
    batchsize = 50
    cost = 0.0
    grad = np.zeros(wordVectors.shape)
    N = wordVectors.shape[0]
    inputVectors = wordVectors[:N // 2, :]
    outputVectors = wordVectors[N // 2:, :]
    for i in range(batchsize):
        C1 = random.randint(1, C)
        centerword, context = dataset.getRandomContext(C1)

        if word2vecModel == skipgram:
            denom = 1
        else:
            denom = 1

        c, gin, gout = word2vecModel(
            centerword, C1, context, tokens, inputVectors, outputVectors,
            dataset, word2vecCostAndGradient)
        cost += c / batchsize / denom
        grad[:N // 2, :] += gin / batchsize / denom
        grad[N // 2:, :] += gout / batchsize / denom

    return cost, grad


def test_word2vec():
    """ Interface to the dataset for negative sampling """
    dataset = type('dummy', (), {})()

    def dummySampleTokenIdx():
        return random.randint(0, 4)

    def getRandomContext(C):
        tokens = ["a", "b", "c", "d", "e"]
        return tokens[random.randint(0, 4)], \
               [tokens[random.randint(0, 4)] for i in range(2 * C)]

    dataset.sampleTokenIdx = dummySampleTokenIdx
    dataset.getRandomContext = getRandomContext

    random.seed(31415)
    np.random.seed(9265)
    dummy_vectors = normalizeRows(np.random.randn(10, 3))
    dummy_tokens = dict([("a", 0), ("b", 1), ("c", 2), ("d", 3), ("e", 4)])
    print("==== Gradient check for skip-gram ====") 
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
        skipgram, dummy_tokens, vec, dataset, 5, softmaxCostAndGradient),
                    dummy_vectors)
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
        skipgram, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient),
                    dummy_vectors)
    print("\n==== Gradient check for CBOW      ====") 
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
        cbow, dummy_tokens, vec, dataset, 5, softmaxCostAndGradient),
                    dummy_vectors)
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(
        cbow, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient),
                    dummy_vectors)

    print("\n=== Results ===") 
    print(skipgram("c", 3, ["a", "b", "e", "d", "b", "c"],
                   dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset)) 
    print(skipgram("c", 1, ["a", "b"],
                   dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset,
                   negSamplingCostAndGradient)) 
    print(cbow("a", 2, ["a", "b", "c", "a"],
               dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset)) 
    print(cbow("a", 2, ["a", "b", "a", "c"],
               dummy_tokens, dummy_vectors[:5, :], dummy_vectors[5:, :], dataset,
               negSamplingCostAndGradient)) 


if __name__ == "__main__":
    test_normalize_rows()
#test_word2vec()

part f: 完成q3 sgd.py。

#!/usr/bin/env python

# Save parameters every a few SGD iterations as fail-safe
SAVE_PARAMS_EVERY = 5000

import glob
import random
import numpy as np
import os.path as op
import pickle as pickle


def load_saved_params():
    """
    A helper function that loads previously saved parameters and resets
    iteration start.
    """
    st = 0
    for f in glob.glob("saved_params_*.npy"):
        iter = int(op.splitext(op.basename(f))[0].split("_")[2])
        if (iter > st):
            st = iter

    if st > 0:
        with open("saved_params_%d.npy" % st, "rb") as f:
            params = pickle.load(f)
            state = pickle.load(f)
        return st, params, state
    else:
        return st, None, None


def save_params(iter, params):
    with open("saved_params_%d.npy" % iter, "wb+", ) as f:
        pickle.dump(params, f)
        pickle.dump(random.getstate(), f)


def sgd(f, x0, step, iterations, postprocessing=None, useSaved=False,
        PRINT_EVERY=10):
    """ Stochastic Gradient Descent

    Implement the stochastic gradient descent method in this function.

    Arguments:
    f -- the function to optimize, it should take a single
         argument and yield two outputs, a cost and the gradient
         with respect to the arguments
    x0 -- the initial point to start SGD from
    step -- the step size for SGD
    iterations -- total iterations to run SGD for
    postprocessing -- postprocessing function for the parameters
                      if necessary. In the case of word2vec we will need to
                      normalize the word vectors to have unit length.
    PRINT_EVERY -- specifies how many iterations to output loss

    Return:
    x -- the parameter value after SGD finishes
    """

    # Anneal learning rate every several iterations
    ANNEAL_EVERY = 20000

    if useSaved:
        start_iter, oldx, state = load_saved_params()
        if start_iter > 0:
            x0 = oldx
            step *= 0.5 ** (start_iter / ANNEAL_EVERY)

        if state:
            random.setstate(state)
    else:
        start_iter = 0

    x = x0

    if not postprocessing:
        postprocessing = lambda x: x

    expcost = None

    for iter in range(start_iter + 1, iterations + 1):
        # Don't forget to apply the postprocessing after every iteration!
        # You might want to print the progress every few iterations.

        cost = None
        ### YOUR CODE HERE
        cost, grad = f(x)
        x -= step * grad
        postprocessing(x)
        ### END YOUR CODE

        if iter % PRINT_EVERY == 0:
            if not expcost:
                expcost = cost
            else:
                expcost = .95 * expcost + .05 * cost
            print("iter %d: %f" % (iter, expcost)) 

        if iter % SAVE_PARAMS_EVERY == 0 and useSaved:
            save_params(iter, x)

        if iter % ANNEAL_EVERY == 0:
            step *= 0.5

    return x


def sanity_check():
    quad = lambda x: (np.sum(x ** 2), x * 2)

    print("Running sanity checks...") 
    t1 = sgd(quad, 0.5, 0.01, 1000, PRINT_EVERY=100)
    print("test 1 result:", t1) 
    assert abs(t1) <= 1e-6

    t2 = sgd(quad, 0.0, 0.01, 1000, PRINT_EVERY=100)
    print("test 2 result:", t2) 
    assert abs(t2) <= 1e-6

    t3 = sgd(quad, -1.5, 0.01, 1000, PRINT_EVERY=100)
    print("test 3 result:", t3) 
    assert abs(t3) <= 1e-6

    print("") 


def your_sanity_checks():
    """
    Use this space add any additional sanity checks by running:
        python q3_sgd.py
    This function will not be called by the autograder, nor will
    your additional tests be graded.
    """
    print("Running your sanity checks...") 
    ### YOUR CODE HERE
    # raise NotImplementedError
    ### END YOUR CODE


if __name__ == "__main__":
    sanity_check()
    #your_sanity_checks()
print("------------------------->it's over!!")

part g:完成q3 run.py。

#!/usr/bin/env python

import random
import numpy as np
from utils.treebank import StanfordSentiment
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import time

from q3_word2vec import *
from q3_sgd import *

# Reset the random seed to make sure that everyone gets the same results
random.seed(314)
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)

# We are going to train 10-dimensional vectors for this assignment
dimVectors = 10

# Context size
C = 5

# Reset the random seed to make sure that everyone gets the same results
random.seed(31415)
np.random.seed(9265)

startTime=time.time()
wordVectors = np.concatenate(
    ((np.random.rand(nWords, dimVectors) - 0.5) /
       dimVectors, np.zeros((nWords, dimVectors))),
    axis=0)
wordVectors = sgd(
    lambda vec: word2vec_sgd_wrapper(skipgram, tokens, vec, dataset, C,
        negSamplingCostAndGradient),
    wordVectors, 0.3, 100000, None, True, PRINT_EVERY=100)
# Note that normalization is not called here. This is not a bug,
# normalizing during training loses the notion of length.

print("sanity check: cost at convergence should be around or below 10") 
print("training took %d seconds" % (time.time() - startTime)) 

# concatenate the input and output word vectors
wordVectors = np.concatenate(
    (wordVectors[:nWords,:], wordVectors[nWords:,:]),
    axis=0)
# wordVectors = wordVectors[:nWords,:] + wordVectors[nWords:,:]

visualizeWords = [
    "the", "a", "an", ",", ".", "?", "!", "``", "''", "--",
    "good", "great", "cool", "brilliant", "wonderful", "well", "amazing",
    "worth", "sweet", "enjoyable", "boring", "bad", "waste", "dumb",
    "annoying"]

visualizeIdx = [tokens[word] for word in visualizeWords]
visualizeVecs = wordVectors[visualizeIdx, :]
temp = (visualizeVecs - np.mean(visualizeVecs, axis=0))
covariance = 1.0 / len(visualizeIdx) * temp.T.dot(temp)
U,S,V = np.linalg.svd(covariance)
coord = temp.dot(U[:,0:2])

for i in range(len(visualizeWords)):
    plt.text(coord[i,0], coord[i,1], visualizeWords[i],
        bbox=dict(facecolor='green', alpha=0.1))

plt.xlim((np.min(coord[:,0]), np.max(coord[:,0])))
plt.ylim((np.min(coord[:,1]), np.max(coord[:,1])))

plt.savefig('q3_word_vectors.png')

part h:完成cbow模型。

整个代码理解起来还好,关键是理解skip-gram模型。看完这篇文章大致界理解了。
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
有些文档中将该模型分为3层,有些4层,有点糊涂。
代码中可以理解为4层,输入层、input hide layer、output hide layer、输出层。
注意这块:
wordVectors = np.concatenate(
    (wordVectors[:nWords,:], wordVectors[nWords:,:]),
axis=0)
将word的数量作为V-dim,词向量的维度为10,即D-dim。这里是拼接。
梯度计算那部分对应的就是part c,不过需要自己分析下,将一部分值替换,分别对应c、o、w。然后就会发现就是part c中的公式。
sigmoid(-x) = 1 – sigmoid(x)。这里需要推导下,替换入公式内。
负采样的代码在提供的接口里。原理搞懂了,不过这个代码还是没理解,真是惭愧。
拮下来试了下是这样的:
 

import numpy as np

vec_dict = {0:10, 1:1, 2:5, 3:1, 4:1, 5:20, 6:3, 7:100, 8:6, 9:9, 10:2, 11:1, 12:2, 13:2, 14:15, 15:7, 16:8, 17:1, 18:34, 19:3}

samplingFreq = np.zeros((len(vec_dict),))
for i in range(len(vec_dict)):
    if i in vec_dict.keys():
        freq = vec_dict[i]
        freq = freq ** 0.75
    samplingFreq[i] = freq
samplingFreq /= np.sum(samplingFreq)
#print(samplingFreq)
samplingFreq = np.cumsum(samplingFreq) * 15
re_table = [0] * 15
j = 0
for i in range(15):
    while i > samplingFreq[j]:
        j += 1
    re_table[i] = j
print(re_table)
[0, 2, 5, 5, 7, 7, 7, 7, 8, 9, 13, 14, 16, 18, 18]

没关系,这个就是负采样的baseline了。

参考:

git@github.com:zzb5233/CS224n.git

https://blog.csdn.net/han_xiaoyang/article/details/51760923

https://blog.csdn.net/u012416045/article/details/78237060

https://www.aliyun.com/jiaocheng/524269.html

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值