- 博客(205)
- 收藏
- 关注
原创 大语言模型是零样本推理器 Large Language Models are Zero-Shot Reasoners
研究背景大模型是优秀的少样本学习器,思维链提示通过少样本分步样例,在算术/符号推理等系统2任务上取得SOTA,但被认为依赖少样本能力。核心创新提出:无需任何少样本样例,仅添加固定短句即可激活大模型的零样本推理能力。实验结论单一提示模板跨算术、符号、逻辑推理任务有效,在 text-davinci-002 和 PaLM-540B 上均实现大幅性能跃升;证明大模型预训练阶段已习得通用推理逻辑,简单提示即可解锁。研究价值提供了极简、高性能的零样本推理基线;
2025-12-15 10:46:39
547
原创 思维链:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
这篇摘要的核心是提出并验证了“思维链提示”核心理念:通过要求语言模型在给出最终答案前,先一步步地展示其推理过程(即“思维链”),可以大幅提升其在复杂任务上的表现。关键方法:这是一种简单的提示工程方法,只需在给模型的提问示例中,包含几个展示完整推理步骤的范例即可。主要发现这种方法能让足够大的模型**“涌现”**出强大的推理能力。它在算术、常识和符号推理等多种任务上都有效。效果非常突出,举例来说,用此方法提示一个超大规模模型(PaLM 540B),在数学解题任务上达到了当时的最优水平。
2025-12-12 18:30:48
783
原创 大模型提示词工程系统学习资料
大模型提示词工程系统学习指南 本资料系统介绍了提示词工程的核心理论与应用方法。主要内容包括: 基础理论:提示词工程本质是唤醒模型已有能力,而非教授新知识。 短提示词优势:复杂提示会增加任务熵,分散注意力,降低准确率。研究显示简单明确的提示更有效。 结构化方法:采用JSON/XML/DSL等结构化格式能显著提升任务确定性。 应用模式:重点介绍了抽取类、分类类和生成类三种典型任务模式。 稳定性机制:从数学角度解释提示词熵模型和注意力分散效应。 论文资源:按主题分类整理了20+篇权威论文,涵盖短提示有效性、结构化
2025-12-08 16:17:00
568
原创 什么是知识图谱
知识图谱是一种结构化表征现实世界实体及其关系的技术框架。其核心要素包括节点(实体)、关系(连接)和组织原则(分类框架),通过图数据库实现高效存储和查询。相比传统关系数据库和RDF三元组存储,原生属性图数据库在建模灵活性、查询性能和开发效率方面具有明显优势。知识图谱广泛应用于搜索引擎优化、企业数据整合和生成式AI等领域,通过上下文关联提升信息检索准确性和AI响应质量。典型应用包括Google知识面板、电子商务推荐系统和GraphRAG技术等,展现出从简单分类到复杂业务场景的广泛适用性。
2025-12-02 11:14:28
558
原创 大模型注意力综述(1)Efficient Attention Mechanisms for Large Language Models: A Survey
高效注意力机制综述:线性与稀疏方法助力长序列建模 本文系统梳理了Transformer架构中自注意力机制的优化方法,重点解决其二次复杂度带来的计算瓶颈。研究聚焦两大技术路线:线性注意力通过核近似、循环公式或快速权重实现线性复杂度;稀疏注意力则采用固定模式、块状路由或聚类策略减少计算量。文章详细分析了各类方法的算法原理、硬件适配性及其在大规模预训练模型中的应用,包括纯高效架构与混合设计。通过连接理论基础与部署实践,为构建可扩展的高效语言模型提供了系统化参考框架,推动长上下文处理技术的发展。
2025-12-02 08:30:00
1727
原创 LLM API 格式与调用方式指南(超清晰版)
特性描述消息格式messages 数组,含 role(system/user/assistant)多轮对话内置工具调用完整支持生态最强1. OpenAI 的 Chat API 已成为事实标准所有主流平台都要兼容它。2. 其他格式是为了不同需求(高吞吐、本地部署等)3. 企业内部系统一般都会支持 OpenAI 格式,让接入最轻松4. 你可以写一个统一适配器来兼容所有格式。
2025-12-01 09:51:31
800
原创 ragflow代码学习切片方式(1)docling_parser.py
枚举就像是一个固定的选项菜单,只能选择其中定义好的值。边界框就是用一个矩形框出文档中某个元素的位置。定义了一个名为的类继承自,意味着它拥有父类的所有功能,并可以扩展或重写定义了一个名为__images__的实例方法self: 指向当前对象实例的引用fnm: 文件名或文件内容,可以是字符串路径或字节数据: 缩放因子,默认值为1(原大小): 起始页码,默认从第0页开始: 结束页码,默认到第600页: 回调函数,用于进度通知等,默认为空:下划线开头表示这是内部方法。
2025-11-17 18:02:36
892
原创 操作系统 内存(5)虚拟内存机制
本文摘要:虚拟内存机制通过按需调页和页面置换,允许程序使用超出物理内存的空间。当访问未加载的页时触发缺页中断,操作系统从磁盘调入所需页,若内存已满则按LRU或Clock算法置换旧页。TLB作为页表的高速缓存,可加速地址转换,减少内存访问开销,配合多级页表提升性能。虚拟内存实现了"部分装入+动态调度"的机制,使有限物理内存能运行更多程序。
2025-11-09 22:00:00
1003
原创 操作系统 内存(4)了解内存管理的基本问题
分页机制通过将虚拟和物理内存划分为固定大小的页/帧,解决了内存碎片问题。页表记录虚拟页到物理帧的映射关系,TLB缓存加速地址转换。分页消除了外部碎片但存在页内碎片。分段机制则基于程序逻辑划分不同区域(代码、数据、栈等),保留逻辑结构但会产生外部碎片。现代操作系统通常结合两者优势:先按逻辑分段,再对每个段进行分页管理,兼顾系统高效和程序逻辑清晰。这种设计既解决了内存碎片问题,又保持了程序的可理解性。
2025-11-07 14:00:00
841
原创 操作系统 内存(3)理解内存的基本概念
早期计算机采用连续内存分配策略,主要包括单一连续分配、固定分区分配和动态分区分配三种方式。为解决碎片化和空间利用率问题,动态分区衍生出四种经典算法:首次适应算法(从低地址开始查找)、最佳适应算法(选择最小足够块)、最差适应算法(分割最大块)和循环首次适应算法(轮流查找)。这些算法在内存管理和碎片控制方面各有优缺点,需要根据实际场景权衡选择。理解这些基础分配机制是后续学习虚拟内存和分页技术的重要基础。
2025-11-06 14:00:00
669
原创 操作系统 内存(2)了解内存管理的基本问题
文章摘要:内存管理是操作系统的核心功能,主要用于解决程序直接操作物理内存带来的问题。首先,隔离不同进程的数据,防止恶意访问或崩溃(虚拟地址空间);其次,实现内存的高效共享(如共享库)和动态分配(malloc/free);最后,处理内存碎片问题(外部和内部碎片)。通过分页、权限控制等机制,操作系统抽象物理内存,提供安全、高效的内存访问环境,类似于旅馆管理房间分配。
2025-11-05 15:00:00
496
原创 操作系统 内存(1)理解内存的基本概念
本文概述了计算机内存的基本概念与运作机制。内存作为CPU直接读写的工作空间,被划分为连续的存储单元,每个单元都有唯一地址。操作系统为每个进程分配专属内存区域,包括代码区(存储指令)、数据区(全局变量)、堆区(动态分配)和栈区(局部变量)等不同功能分区。文章通过城市分区比喻解释各区域特性,并举例说明变量在不同内存区域的分配方式(如栈区的局部变量、堆区的动态分配等)。最后强调内存使用规则,包括地址空间保护、分区边界和生命周期管理,避免越界访问和内存泄漏。
2025-10-29 19:30:00
362
原创 DeepSeek-OCR:ContextsOpticalCompression
DeepSeek-OCR提出了一种创新的视觉-文本压缩方法,通过DeepEncoder将文档图像高比率压缩为少量视觉词符,再由DeepSeek-3B-MoE解码器还原文本。实验显示,10倍压缩下OCR精度达97%,20倍压缩仍保持60%准确率。该系统在OmniDocBench基准测试中以极少量词符超越现有模型,并具备单卡A100日处理20万页的高吞吐量。这一研究为长文本处理提供了新思路,通过视觉压缩解决了LLM的长上下文瓶颈,同时为历史文档压缩和记忆机制研究开辟了新途径。
2025-10-29 13:49:25
827
原创 操作系统 进程(5)进程间的通信
摘要:IPC(进程间通信)是操作系统中进程协作的关键机制,主要分为三种模式:复制传递(如管道、消息队列)、共享内存和信号同步。常用IPC方式包括管道(单向、内核缓冲区)、共享内存(高速但需同步)、消息队列(异步有序)、信号量(同步控制)和套接字(跨主机通信)。不同IPC方式在方向、数据复制、同步需求和适用场景上各有特点,如父子进程通信常用管道,高速数据共享适合共享内存,而网络通信则依赖套接字。
2025-10-23 07:30:00
836
原创 操作系统 进程(4)上下文切换与系统调用
进程切换时,CPU会保存当前进程的寄存器状态(程序计数器、栈指针等)到PCB中,并恢复下一个进程的状态。这一上下文切换过程涉及内核态转换,导致缓存失效、TLB刷新等开销,频繁切换会降低性能。系统调用也会触发用户态/内核态切换,但属于同进程内的特权转换。调度器负责选择下一个执行进程,其算法直接影响切换频率和系统效率。总体而言,上下文切换是多任务调度的核心机制,但需要平衡切换开销与任务执行时间。
2025-10-22 20:30:00
1423
原创 操作系统 进程(3)进程调度算法
本文介绍了操作系统进程调度的核心概念,包括三种调度场景(非抢占式、抢占式、实时)和五种经典算法:FCFS(易导致长作业阻塞)、SJF(需预知执行时间)、RR(时间片轮转公平调度)、优先级调度(可能饿死低优先级)和多级反馈队列(MLFQ,综合最优)。重点分析了各算法的特点、示例计算及优缺点,并对比了吞吐量、周转时间等性能指标。建议通过模拟5个进程的RR和SJF调度来加深理解。MLFQ因其动态调整优先级和时间片的特性,成为现代系统最常用算法。
2025-10-22 18:45:00
1658
原创 在没有网络的环境下安装包pymysql
本文介绍了在无网络环境下通过Docker安装pymysql的完整流程。主要包括:1)在有网络环境下载pymysql安装包;2)将安装包转移到目标环境;3)创建Dockerfile,将安装包复制到容器并安装;4)构建新镜像;5)运行更新后的镜像。整个过程实现了在不联网的情况下,通过Docker容器成功安装所需的Python包。
2025-10-22 10:22:41
351
原创 操作系统 进程(2)线程与并发
文章摘要 本文深入探讨了线程与并发编程的核心概念,重点解析了线程与进程的区别、线程的优势、并发与并行的差异,以及线程的实现方式。线程作为轻量级的执行单位,相比进程节省了内存和切换开销,但牺牲了隔离性。文章通过生动的类比(如厕所坑位和外卖等待)清晰区分了锁阻塞和I/O阻塞两种不同的阻塞机制,并分析了竞态条件的产生原因及解决方案,包括互斥锁和条件变量的使用。最后,文章强调了在多线程编程中同步与互斥机制的重要性,以确保数据一致性和线程安全。
2025-10-21 16:00:00
866
原创 操作系统学习 进程(1)进程的概念与状态
程序如何变成进程? 程序是静态代码,进程是程序执行的动态实例。当程序被加载到内存时,操作系统会为其分配资源(内存、CPU时间等),创建PCB(进程控制块)记录进程状态、寄存器值等关键信息,并将其加入就绪队列等待调度。 进程状态转换: 创建→就绪:分配资源 就绪→运行:获得CPU 运行→阻塞:等待I/O 阻塞→就绪:I/O完成 运行→终止:执行结束 PCB是进程管理的核心,保存进程上下文,实现多任务切换。进程通过状态转换实现CPU资源共享,阻塞状态让CPU能处理其他任务,提高效率。
2025-10-20 19:00:00
795
原创 docker学习(4)容器的生命周期与资源控制
本文总结了Docker容器操作的本质区别及其影响:启动(start)会创建新进程保留数据,暂停(pause)会挂起进程,重启(restart)会重建进程清空内存但保留挂载数据,删除(rm)会彻底移除容器层数据。同时解释了Docker如何通过cgroups限制CPU和内存资源,防止容器间资源抢占;并阐述了Docker解决环境一致性、快速部署和资源隔离的核心价值,以及在微服务和CI/CD中的关键作用。最后指出容器依赖宿主机,系统故障会导致容器中断,但持久化数据可恢复。
2025-10-17 19:00:00
998
原创 docker学习 (3)网络与防火墙
Docker默认创建三种网络:bridge(默认虚拟网桥,容器间可通信)、host(直接使用宿主机网络)和none(无网络接口)。bridge模式下,容器通过docker0网桥互联并借助NAT访问外网。宿主机防火墙通过iptables管理Docker网络规则,端口映射(如-p 8080:80)将宿主机端口转发到容器内部。若防火墙配置不当可能导致网络异常,需检查Docker的iptables规则及firewalld策略。
2025-10-16 22:45:00
932
原创 编码器系列(2)RoBERTa
RoBERTa论文通过系统性实验改进了BERT的预训练过程,提出更高效的训练策略。研究发现原始BERT训练不足,并通过以下优化显著提升性能:(1) 延长训练时间,扩大批次规模,增加数据量;(2) 移除下一句预测目标;(3) 使用更长的序列;(4) 采用动态掩码模式。在相同数据量下,优化后的模型在GLUE和SQuAD上超越原始BERT;当使用额外数据训练后,在GLUE、RACE等任务上达到最先进水平。研究证明充分优化的掩码语言模型目标仍具竞争力,并开源了模型代码和新数据集CC-NEWS。
2025-10-16 09:43:12
851
原创 docker学习(2)存储与挂载
Docker数据持久化方式对比及命令解析 容器删除后数据的去向 默认情况下,容器删除时其可写层数据会丢失。只有使用外部存储方式的数据才会保留,主要包括: Volume(Docker管理的专用数据目录) Bind Mount(直接挂载宿主机路径) Tmpfs Mount(仅内存存储) 三种持久化方式对比 特性 Volume Bind Mount Tmpfs 存储位置 Docker管理 宿主机指定路径 内存 容器删除后保留 ✅ ✅ ❌ 多容器共享 ✅ ✅ ❌ 速度 中等 中等 极快 命令解析 -v(简写)和--
2025-10-15 11:12:01
643
原创 docker学习(1)Docker 与容器的核心概念
Docker通过Linux内核的namespace和cgroup机制实现容器隔离,相比虚拟机少了Hypervisor层,直接共享宿主机内核。镜像作为只读模板定义环境,容器运行时在其上叠加可写层,修改不会影响镜像。namespace提供进程、网络等隔离视图,cgroup限制资源使用,两者共同实现轻量级虚拟化。挂载(volume)可实现数据持久化,而环境变更需通过Dockerfile固化到镜像中。这种设计使容器既能隔离运行,又能高效共享系统资源。
2025-10-13 09:59:56
1011
原创 编码器系列(1)BERT
提出了一种新的语言表示模型,称为 BERT,其全称是来自 Transformers 的双向编码器表示。与近期的语言表示模型(Peters 等人,2018a;Radford 等人,2018)不同,BERT 旨在通过在所有层中联合调节左右上下文,从无标注文本中预训练深度双向表示。
2025-09-28 10:45:38
792
原创 Transformer原理学习(4)注意力机制
本文介绍了Transformer中的几种注意力机制及其原理。核心是缩放点积注意力(Scaled Dot-Product Attention),通过Q(查询)、K(键)、V(值)计算相关性并加权聚合信息。多头注意力并行多个注意力头,在不同子空间学习多样化关系。掩码自注意力用于解码器,屏蔽未来信息防止作弊。交叉注意力让解码器查询编码器输出,实现输入输出对齐。这些机制共同使Transformer能有效建模长距离依赖和复杂语义关系。
2025-09-23 22:30:00
2147
原创 Transformer论文(1)Attention Is All You Need
主流的序列转换模型基于复杂的循环神经网络或卷积神经网络,这些网络包含编码器和解码器。性能最佳的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单网络架构——Transformer,它完全基于注意力机制,完全摒弃了循环和卷积结构。
2025-09-22 17:21:21
525
原创 目标计数(4)Class-agnostic Few-shot Object Counting
本文提出了一种有效的目标计数网络:类别无关少样本目标计数网络(Class-agnostic Fewshot Object Counting Network, CFOCNet),它能够根据输入的参考图像对任意类别的目标进行计数。CFOCNet网络由一个双流Resnet编码器和一个解码器组成。编码器分别提取查询图像和参考图像的特征,通过相关操作来嵌入两个分支的信息以计算不同尺度下的匹配分数;解码器通过可训练的加权求和机制融合编码器生成的分数图,以生成预测的密度图。
2025-09-19 09:10:14
991
原创 目标计数(3)Object Counting: You Only Need to Look at One
本文旨在解决单次目标计数的问题,具体来说,仅采用包含一个示例样本边界框的图像作为输入,来统计出该类别所有目标的个数。单样本计数存在的主要问题:目标计数任务中包含不同的类别,甚至一张图片里面就有多个类别,而在少样本计数中,这些类别在训练和推理阶段不会重叠;在单样本计数中,模型仅仅能从单个实例中学习;目标的尺寸、形状可能差异较大。
2025-09-17 15:05:28
1068
原创 Transformer原理学习(3)线性变换
Transformer架构中的线性变换是其核心操作之一,主要用于将输入序列映射到不同的语义空间。在自注意力机制中,通过三个独立的线性变换矩阵(WQ、WK、WV)分别生成查询(Query)、键(Key)和值(Value),使模型能够从不同视角理解token之间的关系。这种设计源于早期注意力机制的演变:从RNN的瓶颈问题到Bahdanau的加性注意力,再到Luong的点积注意力,最终形成Q/K/V的抽象框架。线性变换的关键作用在于解耦token的三种角色——提问方式、匹配标签和信息传递,从而增强模型捕捉复杂依赖
2025-09-17 09:19:28
1258
原创 Transformer原理学习(2)位置编码
位置编码是为Transformer模型提供序列位置信息的关键技术。由于Transformer的并行处理特性会丢失词序信息,位置编码通过将位置向量与词嵌入相加来注入位置数据。理想的位置编码需满足唯一性、跨句距离一致性、有界性和确定性等要求。从初始的整型标记发展到采用正弦和余弦函数的周期性表示,这种设计不仅解决了离散空间问题,还能通过线性变换捕捉相对位置关系。相加而非拼接的方式既节省参数量,又允许模型自主分配信息维度。残差连接则确保位置信息能传递到深层网络。这种创新的位置编码方法为Transformer处理变长
2025-09-15 22:39:52
1074
原创 目标计数论文阅读(2)Learning To Count Everything
现有关于视觉计数的研究大多仅针对单一特定类别(如人、动物、细胞)进行。本文提出了一种通用计数方法,旨在仅需给定目标类别的少量标注实例,即可对任意类别物体进行计数。我们将计数问题构建为一个少样本回归任务,并提出一种新颖的方法:通过输入查询图像及该图像中少量示例物体,预测查询图像中所有目标类别的物体的密度分布图。此外,我们设计了一种创新的自适应策略,使网络在测试时能够仅通过来自新类别的少量示例物体,快速适应任何未知视觉类别。
2025-09-14 16:45:00
854
2
原创 python知识点(1)程序、进程、线程、协程是什么,有什么区别
本文系统介绍了计算机系统中的程序、进程、线程和协程四大核心概念。程序是静态的代码文件,进程是程序运行的实例,线程是进程的执行单元,协程则是轻量级的用户态线程。四者在资源分配、内存隔离、执行效率等方面各具特点:进程独立性强但开销大,线程共享内存但需同步机制,协程适合高并发I/O任务。文章通过生活类比和代码示例,清晰阐述了不同层级的执行单元如何协作完成计算任务,并提供了适用场景的选择建议,帮助读者理解计算机系统的多任务处理机制。
2025-09-14 13:21:50
912
原创 目标计数论文阅读(1)Class-Agnostic Counting
研究旨在提出一种通用物体计数模型,能够计数任何类别的物体,这与绝大多数为特定类别设计的现有方法不同。为实现这一目标,研究将计数问题重新定义为匹配问题,从而能够利用计数任务中天然存在的图像自相似性特性。提出通用匹配网络(GMN)架构:这是一个能够以类别无关(class-agnostic)的方式计数任何物体的模型架构。利用追踪数据进行训练:通过将计数定义为物体匹配,研究可以充分利用大量为视频目标追踪标注的数据。这些数据包含丰富的自然重复对象,非常适合用于训练这种计数模型。引入适配器模块实现少样本定制。
2025-09-12 16:00:00
1656
原创 python中等难度面试题(3)装饰器
Python装饰器是一种在不修改原函数代码的情况下增强函数功能的技术。当多个装饰器嵌套使用时,其执行顺序遵循"从里到外"的安装顺序和"从外到里"的执行顺序。通过示例代码可以看到:装饰器安装阶段会立即执行装饰器函数(输出"装饰器2安装"、"装饰器1安装"),而函数调用时则按照装饰器的嵌套顺序执行(输出"装饰器1执行前"→"装饰器2执行前"→目标函数→"装饰器2执行后"→&
2025-09-11 16:00:00
1890
原创 python中等难度面试题(2)
Python代码输出结果及解析: a1 == a2返回True(调用__eq__方法比较值相等) a1 is a2返回False(不同内存对象) a1 == a3返回True(值相同) a1 is a3返回True(同一对象引用)。 核心知识点: ==触发__eq__方法进行值比较 is比较对象内存地址 Python变量存储对象引用,赋值操作实现引用复制 自定义类需重写__eq__才能支持值比较
2025-09-08 18:19:27
946
原创 python中等难度面试题(1)
Python拷贝机制总结 Python中浅拷贝(copy())仅复制外层对象,内部对象仍共享引用;深拷贝(deepcopy())递归复制所有对象,完全独立。浅拷贝可能导致意外修改共享数据,深拷贝则消耗更多资源。列表推导式简洁高效但可能影响可读性,而生成器表达式((x for x))惰性求值,适合大数据处理。生成器函数通过yield暂停/恢复执行,利用闭包和生成器帧保持状态,比手工实现迭代器更高效。实际应用中应根据数据规模、内存需求及代码复杂度选择合适方案。
2025-09-05 18:19:41
840
原创 Dify工作流--发票信息获取
本文描述了一个基于视觉和语言大模型的发票信息提取系统。系统支持两种输入格式:发票图片(使用GLM4.5V视觉模型处理)和PDF文件(通过文档提取器处理后由QWen3-30B语言模型解析)。处理流程包括:1)输入检测(区分图片/PDF);2)对应模型处理;3)输出结构化JSON结果,包含发票号码、日期、买卖双方信息、商品明细及金额等字段。系统特别强调严格的JSON输出格式要求,并提供了标准的提示词模板,确保不同输入方式都能得到统一格式的输出结果。该方案展示了多模态模型在票据识别领域的应用潜力。
2025-09-01 16:08:00
481
原创 Dify工作流之合同信息提取
本文介绍了一个基于AI的合同关键信息提取及风险分析系统。该系统工作流程包括:1)输入合同文档;2)通过文档提取器处理多格式文件;3)大模型执行智能审查(含主体名称、金额、日期等一致性检查);4)Markdown格式转换;5)输出Docx文件。系统能自动识别合同基本信息,检查格式规范与逻辑一致性,并输出结构化分析结果,实现合同风险的可视化呈现与智能预警。
2025-08-30 22:31:07
1165
原创 OpenCV之霍夫变换
霍夫变换是一种经典的形状检测算法,广泛应用于直线和圆的识别。其核心思想是将图像空间的特征映射到参数空间进行投票,通过峰值搜索确定几何形状参数。对于直线检测,通过极坐标(ρ,θ)表示直线,利用投票机制找到图像中的直线;对于圆检测,则构建三维参数空间(a,b,r)来定位圆心和半径。OpenCV提供了HoughLines和HoughCircles等函数实现该算法,通过调整参数如投票阈值、精度等可优化检测效果。该算法虽计算量较大,但在边缘清晰的图像中表现优异,是计算机视觉中重要的基础算法。
2025-08-29 10:05:27
943
大模型注意力机制演化与发展,十篇近年来综述
2025-10-22
亿图画图软件,画你想画
2025-09-19
dify1.4.2 插件junjiem-mcp-compat-dify-tools-0.1.1-offline.difypkg
2025-06-17
dify1.4.2 插件hjlarry-mcp-server-0.0.3-offline.difypkg
2025-06-17
dify1.4.2,插件hjlarry-agent-0.0.1-offline.difypkg
2025-06-17
【自然语言处理】大型语言模型的检索增强生成技术综述:从Naive RAG到Modular RAG的发展与应用
2025-05-23
【信息检索领域】基于假设文档嵌入的无监督零样本密集检索模型HyDE:无需相关性标签的跨任务与多语言高效检索
2025-05-23
【自然语言处理领域】基于检索增强生成(RAG)模型的综述:多模态信息融合与应用挑战分析
2025-05-23
【自然语言处理】大型语言模型的检索增强生成技术综述:发展历程、关键技术与未来方向了检索增强生成### 文章总结:Generate-Then-Read:利用大型语言模型生成上下文文档以解决知识密集型任务
2025-05-23
细粒度图像分类上 Vision Transformer 的发展综述
2024-01-07
The Oxford Handbook of Affective Computing
2023-10-25
一篇关于计算机视觉和人类视觉之间关系的综述性文章
2023-10-25
一篇关于人类对视觉信息感知的文章
2023-10-25
Multi-Label Image Recognition with Graph Convolutional Networks
2023-10-18
abstract图像情感数据集
2023-10-18
图像情感分析 英文论文十篇
2023-10-18
图像情感分类数据集Emotion6
2023-10-18
损失函数 LDAM (详细代码,亲测可运行)
2023-10-18
深度学习 + Resnet + 详解
2023-10-18
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅