1914
中国上市公司数智化(1991-2024)
数据简介
企业数智化指标通过量化数字化与智能化的融合程度,为研究企业转型提供微观基础。基于Python文本分析构建的关键词词频指标(刘凌冰等,2024),可客观衡量企业技术应用水平并追踪转型进程。该指标不仅拓展了数字化转型经济后果的研究范畴,从治理效率延伸至信息披露策略,更揭示了数智化企业偏好非正式渠道定性披露以规避风险的新范式。
具体构建方法如下:
1、样本选取:A股非金融类上市公司,剔除ST及退市样本
2、文本处理:
采用哈工大停用词表过滤无效词汇
基于专业词典识别数智化术语(如"机器学习"、"智能医疗"等)
3、指标计算:
统计特征术语绝对频次及相对占比
对右偏数据进行对数化处理(ln(x+1))
4、输出结构化数据集(含股票代码、公司名称、词频等字段)
该指标为监管完善信披规则、投资者提升信息甄别能力提供了重要参考。
时间跨度
1991年-2024年
数据范围
A股上市公司
数据格式
数据格式为Excel形式
数据指标
相关研究
数智化对企业信息披露行为的影响研究
企业数智化与信息披露行为的关系成为近年研究热点。刘凌冰等(2024)基于Python文本分析构建企业数智化指标,考察了数智化对上市公司量化预算目标信息披露的影响。研究发现,数智化程度越高的企业,在年报等正式渠道披露量化预算目标信息的可能性越低。这一现象源于数智化企业更倾向于通过非正式渠道以非量化形式披露预测性信息。研究还发现,行业竞争程度和董秘法律专业背景会强化这一替代效应。该研究揭示了数智化背景下企业信息披露策略的转变,为理解新技术环境下的信息传递机制提供了重要启示。
未来研究价值
1. 数智化转型对企业绿色创新的影响机制
路径:企业数智化程度→绿色专利产出→环境绩效提升
设计:基于文本挖掘构建数智化指标,匹配绿色专利数据,运用中介效应模型检验技术赋能路径。
2. 数字经济政策与上市公司数智化投入的协同效应
路径:数字经济示范区政策→数字技术应用深化→企业数智化投资增长
设计:以国家数字经济试验区为准自然实验,构建多期DID模型评估政策外溢效应。
3. 供应链韧性在数智化影响企业ESG表现中的调节作用
路径:数智化水平→供应链透明度提升→ESG评级改善
设计:采用供应链中断事件冲击,检验数智化对ESG表现的缓冲效应。
4. 高管技术背景对企业数智化转型的驱动效应
路径:高管团队AI/大数据专业背景→数智化战略实施强度→企业数字化转型深度
设计:通过高管简历文本分析构建技术认知指标,考察其与数智化投入的关系。
5. 绿色金融改革对数智化技术扩散的促进作用
路径:绿色信贷政策→清洁技术研发激励→AI/大数据技术应用扩展
设计:利用绿色金融改革试验区政策,分析数智化技术在环保领域的渗透率变化。
6. 行业竞争压力下数智化与企业绩效的非线性关系
路径:行业集中度→数智化投入边际收益→全要素生产率增长
设计:构建行业竞争强度指标,采用面板门槛模型识别最优数智化投入区间。
7. 数据要素市场培育对企业数智化决策的影响
路径:数据交易平台建设→数据资产价值实现→数智化投资意愿
设计:匹配各地区数据要素市场建设进度与企业技术投入数据,评估制度创新效应。
8. 数智化技术应用对劳动力结构优化的动态影响
路径:AI/大数据渗透率→高技能劳动力需求→人力资本结构调整
设计:基于企业专利和招聘数据,构建技能结构调整指数,分析技术替代效应。
9. 区域创新生态对数智化技术溢出的空间效应
路径:区域数字基础设施→技术扩散半径→邻近企业数智化水平提升
设计:构建空间杜宾模型,测度数智化技术溢出的地理衰减边界。
10.双重监管压力下数智化与企业碳信息披露策略
路径:环境规制强度×数据安全监管→信息披露渠道选择→碳信息透明度
设计:采用双重差分法,检验监管政策叠加对数智化企业信披行为的影响。
参考文献
[1]刘凌冰,王语彤,耿会欣.企业数智化与量化预算目标信息披露行为[J].会计研究,2024,(11):63-78.
声明:本数据由数据皮皮侠团队整理,仅用于学术研究