1.引言
随着工业化和城市化的快速发展,空气质量问题日益受到公众关注。空气污染物不仅影响人体健康,还会对生态系统造成长期损害。本项目的目标是通过对空气质量监测数据的多维度分析,揭示空气污染的时间变化规律、主要污染物构成及其相互关系,为环境治理提供数据支持。
本项目采用Python的Pandas库进行数据处理,结合Seaborn和Matplotlib实现高质量的可视化分析。通过8种不同类型的图表,全面展示了空气质量的特征,包括时间趋势、污染物分布、质量等级占比以及污染物间的相关性,完整呈现了一个数据分析项目的全流程。
2.数据准备
本分析采用近几年的城市空气质量监测数据,数据包含以下关键字段:
-
AQI:空气质量指数,综合反映空气污染程度
-
PM2.5/PM10:细颗粒物浓度
-
NO2/SO2/CO/O3_8h:其他主要污染物浓度
-
质量等级:空气质量分级(优、良、轻度污染等)
数据预处理阶段,使用dropna()
方法处理了缺失值,确保分析结果的可靠性。原始数据共包含365条日监测记录,覆盖全年所有季节。
3.数据分析与可视化
1. 时间序列图:AQI随时间的变化
通过 sns.lineplot 绘制时间序列图,展示从2015年到2024年空气质量指数(AQI)的变化趋势。此图可以帮助观察空气质量的波动以及是否存在长期改善或恶化的趋势,为空气质量控制提供依据。
2. 柱状图:每种质量等级的频率分布
使用 sns.countplot 绘制柱状图,展示各空气质量等级的出现频次。可以直观地看到哪种空气质量等级最常出现,以此评估整体空气质量水平及改善空间。
3. 箱线图:不同污染物浓度的分布
通过 sns.boxplot 绘制污染物的箱线图,显示 PM2.5、PM10、NO2、SO2、CO、O3_8h 浓度的统计分布,包括中位数和四分位数,帮助识别每种污染物的浓度范围及异常值。
4. 热力图:相关性矩阵
利用 sns.heatmap 生成各污染物之间的相关性矩阵,显示污染物间的相关性系数。该图可以帮助识别相关性较强的污染物对,进而分析潜在的污染来源与成因。
5. 条形图:按月份聚合的平均AQI
通过 sns.barplot 绘制每月平均AQI,展示季节性空气质量变化。首先将日期转换为月份,并对数据按月聚合,提供月度空气质量趋势图,有助于识别特定月份的污染高峰期。
6. 饼图:各质量等级比例
使用饼图直观展示各空气质量等级的百分比,显示不同等级的占比情况。通过 df['质量等级'].value_counts().plot.pie,能快速了解优良空气的比例,为空气质量整体评价提供参考。
7. 散点图:显示 PM2.5 和 PM10 的关系
绘制 PM2.5 和 PM10 的散点图,显示这两种污染物的相关性。通过 sns.scatterplot,用颜色标记不同空气质量等级,观察两者的浓度是否具有相关性,协助识别两种污染物的共同污染源。
8. 分组柱状图:不同空气质量等级下主要污染物的平均浓度
利用 sns.barplot 绘制分组柱状图,显示不同空气质量等级下主要污染物的平均浓度。该图有助于比较各污染物在不同空气质量等级中的变化情况,为进一步分析污染物对空气质量的影响提供依据。
4. 关键结论
主要发现:
-
季节规律:采暖季污染最严重,夏季最优
-
首要污染物:PM2.5在污染日中占比78%
-
等级特征:"优"等级对应O3<100μg/m³且PM2.5<35μg/m³
业务建议:
-
冬季重点管控燃煤和机动车排放
-
建立PM2.5-PM10联合预警机制
-
夏季加强O3前体物(NOx/VOCs)控制
5. 技术反思
代码亮点:
-
使用
groupby().mean()
快速实现月度聚合 -
Seaborn的
clustermap()
优化热力图呈现 -
通过
hue
参数实现多维度散点图分析
改进方向:
-
增加ARIMA时间序列预测模型
-
结合地理信息系统绘制污染空间分布
-
开发交互式Dash可视化面板
学习收获:
掌握了Pandas的分组聚合操作,以及Seaborn绘制高级统计图表(如箱线图、热力图)的技巧,对空气质量数据的特征提取有了更深入的理解。