前缀和 and 差分

前缀和

什么是前缀和?

  • 数列的和时,Sn = a1+a2+a3+…an; Sn就是数列的前 n 项和。

  • 前缀和就是新建一个数组,新建数组中保存原数组前 n 项的和。
    在这里插入图片描述
    前缀和有什么用?

  • 快速求某个区间中所有元素的加和。

  • 例 S4 = a1 + a2 + a3 + a4; S1 = a1。所以可以通过 S4-S1 得到 a2+a3+a4 的值。
    在这里插入图片描述

具体做法:

首先做一个预处理,定义一个sum[]数组,sum[i]代表a数组中前i个数的和。

求前缀和运算:

const int N = 1e5+10;
int sum[N], a[N]; //sum[i] = a[1] + a[2] + a[3] ..... a[i];
for(int i = 1; i <= n;i++)
{ 
    sum[i] = sum[i - 1] + a[i];   
}

然后查询操作:

 scanf("%d%d", &l, &r);
 printf("%d\n", sum[r] - sum[l - 1]);

对于每次查询,只需执行sum[r] - sum[l - 1] ,时间复杂度为O(1)

原理

sum[r] = a[1] + a[2] + a[3] + a[l-1] + a[l] + a[l+1] ...... a[r];
sum[l - 1] = a[1] + a[2] + a[3] + a[l - 1];
sum[r] - sum[l - 1] = a[l] + a[l + 1]+......+ a[r];

图解
在这里插入图片描述

这样,对于每个询问,只需要执行 sum[r]-sum[l-1]。输出原序列中从第l个数到第r个数的和的时间复杂度变成了O(1)

我们把它叫做一维前缀和。

总结:
在这里插入图片描述

代码

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1e5+10;
int a[N],sum[N];
int main()
{
    int n,m,x;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>x;
        sum[i]=x+sum[i-1];
    }
    while(m--)
    {
        int l,r;
        cin>>l>>r;
        cout<<sum[r]-sum[l-1]<<endl;
    }
    return 0;
}

Java代码

import java.util.Scanner;
public class Main{
    public static void main(String[] args){
        Scanner scan  = new Scanner(System.in);
        int n = scan.nextInt();
        int m = scan.nextInt();
        int[] a = new int[n+1];
        int[] s = new int[n+1];
        for(int i = 1 ; i <= n ; i ++ ){
            a[i] = scan.nextInt();
        }
        for(int i = 1 ; i <= n ; i ++){
                s[i] = s[i-1] + a[i];
        }
        while(m-- > 0){
            int l = scan.nextInt();
            int r = scan.nextInt();
            System.out.println(s[r] - s[l-1]);
        }
    }
}

二维前缀和

推导

如图:
在这里插入图片描述

紫色面积是指(1,1)左上角到(i,j-1)右下角的矩形面积, 绿色面积是指(1,1)左上角到(i-1, j )右下角的矩形面积。每一个颜色的矩形面积都代表了它所包围元素的和。
在这里插入图片描述

**从图中我们很容易看出,**整个外围蓝色矩形面积s[i][j] = 绿色面积s[i-1][j] + 紫色面积s[i][j-1] - 重复加的红色的面积s[i-1][j-1]+小方块的面积a[i][j];

因此得出二维前缀和预处理公式

s[i] [j] = s[i-1][j] + s[i][j-1 ] + a[i] [j] - s[i-1][ j-1],

接下来回归问题去求以(x1,y1)为左上角和以(x2,y2)为右下角的矩阵的元素的和。

如图:
在这里插入图片描述

紫色面积是指 ( 1,1 )左上角到(x1-1,y2)右下角的矩形面积 ,黄色面积是指(1,1)左上角到(x2,y1-1)右下角的矩形面积;

不难推出:

绿色矩形的面积 = 整个外围面积s[x2, y2] - 黄色面积s[x2, y1 - 1] - 紫色面积s[x1 - 1, y2] + 重复减去的红色面积 s[x1 - 1, y1 - 1]

因此二维前缀和的结论为:

(x1, y1)为左上角,(x2, y2)为右下角的子矩阵的和为:
s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1, y1 - 1],

总结:
在这里插入图片描述

代码:

#include <iostream>

using namespace std;

const int N = 1010;

int n, m, q;
int s[N][N];

int main()
{
    scanf("%d%d%d", &n, &m, &q);

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            scanf("%d", &s[i][j]);

    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= m; j ++ )
            s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];

    while (q -- )
    {
        int x1, y1, x2, y2;
        scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
        printf("%d\n", s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1]);
    }

    return 0;
}

Java代码

import java.util.Scanner;
public class Main{
    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int m = scan.nextInt();
        int q = scan.nextInt();
        int[][] a = new int[n+1][m+1];
        int[][] s = new int[n+1][m+1];
        for(int i = 1 ; i <= n  ; i ++ ){
            for(int j = 1 ;j <= m ; j ++ ){
                a[i][j] = scan.nextInt();
            }
        }
        for(int i = 1 ; i <= n  ; i ++ ){
            for(int j = 1 ;j <= m ; j ++ ){
                s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];
            }
        }
        while(q-->0){
            int x1 = scan.nextInt();
            int y1 = scan.nextInt();
            int x2 = scan.nextInt();
            int y2 = scan.nextInt();
            System.out.println(s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1]);
        }
    }
}

差分

类似于数学中的求导和积分,差分可以看成前缀和的逆运算

从前缀和一步步推导出差分

看一下前缀和数组:

若原数组 a = [3, 1, 2, 5, 7]

则前缀和数组 b = [3,4,6,11,18]

在这里插入图片描述

对 a 数组进行操作对应前缀和数组的什么操作?

对 a 数组的某个元素增加c,对应前缀和数组的操作是:

  1. 对 a[2] 增加 3, 则 b 数组变为:[3, 4, 6 + 3, 11 + 3, 18 + 3] = [3, 1, 5, 8, 10]
    在这里插入图片描述

  2. 原数组 a 的某个元素增加一个数,则对应前缀和数组 s 变化是:该元素及他之后的元素都增加 c

也就是: 如果原数组 a[x] 变化,则前缀和数组 s : x 和 x 之后的元素全都变化

根据上面规律,对原数组 a ,如果 a[l] 增加 c, a[r] 减少 c(增加 -c),对应前缀数组 s 的操作是:

a[l] 增加 c:前缀数组 s的变化是:l 和 l 之后的元素增加 c,如下图:
在这里插入图片描述

a[r] 减少 c:前缀数组 s的变化是:r 和 r之后的元素减少 c,如下图:
在这里插入图片描述

前缀数组 s 总的变化:s 的[l, r - ]区间的数增加 c,如下图:
在这里插入图片描述

总结下就是:

原数组的单点操作,对应前缀和数组的区间操作

前缀和数组的区间操作,对应原数组的单点操作

来看题目

输入一个长度为 n 的整数序列。

接下来输入 m 个操作,每个操作包含三个整数 l,r,c ,表示将序列中 [l,r] 之间的每个数加上 c 。

请你输出进行完所有操作后的序列。

输入格式
第一行包含两个整数 n 和 m 。

第二行包含 n 个整数,表示整数序列。

接下来 m 行,每行包含三个整数 l,r,c ,表示一个操作。

输出格式
共一行,包含 n 个整数,表示最终序列。

数据范围
1≤n,m≤100000 , 1≤l≤r≤n , −1000≤c≤1000 , −1000≤整数序列中元素的值≤1000
输入样例
6 3 1 2 2 1 2 1 1 3 1 3 5 1 1 6 1
输出样例
3 4 5 3 4 2

题目是对 a 数组进行多次区间操作,求变化后 a 数组。

  • 如果用暴力的方法做,改变区间元素的时间复杂度:O(n),如果有 m 次操作,总时间负责度是 O(n * m)

**如果构造出一个数组 b,b 的前缀和是数组 a,那么对 a 的区间操作,对应b 的单点操作。**根据前缀和的性质,可以通过数组 b 求出数组 a,也可以通过数组 a 求出数组 b.

我们在区间操作之前构造出数组 b,那么 a 的区间操作,对应 b 的两点操作。

接下来的若干区间操作,不应用的数组 a 上,而是将该区间操作对应的两点操作应用到b上。等所有操作都完成后,再从 b 还原出数组 a 。

这样,就将区间操作转换成了两点操作。额外付出的代价是:构造数 b,从数组 b 换原出数组 a。m 次区间操作对应的时间复杂度是O(n)。

将 m 次对 a 的区间操作,转换成 m 次对 b 的两点操作,再由 b 换原出 a即可

这里的数组 b 叫做 a 的差分数组

看一下如何构造出差分数 b:

首先假设a,b都为空数组,也就是全部为0的情况,

因为a[i][j] = b[1][1]+…b[i][j],因为都是0,所有情况满足!

这总情况下,b 数组是 a 数组的差分数组!

实际上,a数组不为空,我们可以把a数组中的值看作(0+a[i][j])。

相当于在数组 a 中, 在区间[i, i] 上加了 a[i].

对应前缀和数组 b的操作是:b[i] += a[i], b[i + 1] -= a[i]

所以:

b[i] = a[i] - a[i - 1],

代码

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;
const int N = 100010;

int a[N];
int b[N];

int n,  m;
int main()
{
    cin >> n >> m;
    // 读入数组 a
    for (int i = 1; i <= n; i ++ ) cin >> a[i];
    // 构造差分数组 b
    for (int i = 1; i <= n; i ++ ) b[i] = a[i] - a[i - 1];
    // 执行m次操作
    while(m--)
    {
        int l, r, k;
        // 区间操作转换为两点操作
        cin >> l >> r >> k;
        b[l] += k;
        b[r + 1] -= k;
    }
    // 通过前缀和,还原数组a
    for (int i = 1; i <= n; i ++ )
    {
        a[i] = a[i - 1] + b[i];
        // 输出结果
        cout <<a[i]<<" ";
    }
    return 0;
}

Java代码

import java.util.Scanner;
public class Main{
    int[] b = new int[100010];
    public  void insert(int l ,int r ,int c){
        b[l] += c;
        b[r+1] -= c;
    }
    public static void main(String[] args){
        new Main().test();
    }
    public void test(){
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int m = scan.nextInt();
        int[] a = new int[n+1];

        for(int i = 1 ; i <= n ; i ++ ){
            a[i] = scan.nextInt();
        }
        for(int i = 1;i <= n ; i ++ ){
            insert(i,i,a[i]);
        }
        while(m-->0){
            int l = scan.nextInt();
            int r = scan.nextInt();
            int c = scan.nextInt();
            insert(l,r,c);
        }
        for(int i = 1;i <= n ; i ++ ){
            a[i] = a[i-1] + b[i];
            System.out.print(a[i] + " ");
        }

    }
}

二维差分

如果扩展到二维,我们需要让二维数组被选中的子矩阵中的每个元素的值加上c,是否也可以达到O(1)的时间复杂度。答案是可以的,考虑二维差分

题目

输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数 x1,y1,x2,y2,c ,其中 (x1,y1) 和
(x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。

每个操作都要将选中的子矩阵中的每个元素的值加上 c 。

请你将进行完所有操作后的矩阵输出。

a[][]数组是b[][]数组的前缀和数组,那么b[][]a[][]的差分数组

原数组: a[i][j]

我们去构造差分数组: b[i][j]

使得a数组中a[i][j]b数组左上角(1,1)到右下角(i,j)所包围矩形元素的和。

如何构造b数组呢?

我们去逆向思考。

同一维差分,我们构造二维差分数组目的是为了 让原二维数组a中所选中子矩阵中的每一个元素加上c的操作,可以由O(n*n)的时间复杂度优化成O(1)

已知原数组a中被选中的子矩阵为 以(x1,y1)为左上角,以(x2,y2)为右下角所围成的矩形区域;

始终要记得,a数组是b数组的前缀和数组,比如对b数组的b[i][j]的修改,会影响到a数组中从a[i][j]及往后的每一个数。

假定我们已经构造好了b数组,类比一维差分,我们执行以下操作
来使被选中的子矩阵中的每个元素的值加上c

b[x1][y1] += c;

b[x1,][y2+1] -= c;

b[x2+1][y1] -= c;

b[x2+1][y2+1] += c;

每次对b数组执行以上操作,等价于:

for(int i=x1;i<=x2;i++)
  for(int j=y1;j<=y2;j++)
    a[i][j]+=c;

我们画个图去理解一下这个过程:
在这里插入图片描述
b[x1][ y1 ] +=c ; 对应图1 ,让整个a数组中蓝色矩形面积的元素都加上了c
b[x1,][y2+1]-=c ; 对应图2 ,让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y1]- =c ; 对应图3 ,让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y2+1]+=c; 对应图4,让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。
在这里插入图片描述

我们将上述操作封装成一个插入函数:

void insert(int x1,int y1,int x2,int y2,int c)
{     //对b数组执行插入操作,等价于对a数组中的(x1,y1)到(x2,y2)之间的元素都加上了c
    b[x1][y1]+=c;
    b[x2+1][y1]-=c;
    b[x1][y2+1]-=c;
    b[x2+1][y2+1]+=c;
}

我们可以先假想a数组为空,那么b数组一开始也为空,但是实际上a数组并不为空,因此我们每次让b数组以(i,j)为左上角到以(i,j)为右下角面积内元素(其实就是一个小方格的面积)去插入 c=a[i][j],等价于原数组a(i,j)(i,j)范围内 加上了 a[i][j] ,因此执行n*m次插入操作,就成功构建了差分b数组.

这叫做曲线救国。

代码如下:

 for(int i=1;i<=n;i++)
  {
      for(int j=1;j<=m;j++)
      {
          insert(i,j,i,j,a[i][j]);    //构建差分数组
      }
  }

总结:

在这里插入图片描述

代码

#include<iostream>
#include<cstdio>
using namespace std;
const int N = 1e3 + 10;
int a[N][N], b[N][N];
void insert(int x1, int y1, int x2, int y2, int c)
{
    b[x1][y1] += c;
    b[x2 + 1][y1] -= c;
    b[x1][y2 + 1] -= c;
    b[x2 + 1][y2 + 1] += c;
}
int main()
{
    int n, m, q;
    cin >> n >> m >> q;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            cin >> a[i][j];
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            insert(i, j, i, j, a[i][j]);      //构建差分数组
        }
    }
    while (q--)
    {
        int x1, y1, x2, y2, c;
        cin >> x1 >> y1 >> x2 >> y2 >> c;
        insert(x1, y1, x2, y2, c);
    }
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];  //二维前缀和
        }
    }
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= m; j++)
        {
            printf("%d ", b[i][j]);
        }
        printf("\n");
    }
    return 0;
}

Java代码

import java.util.*;

public class Main{
    static int N = 1010;
    static int n, m, q;
    static int[][] b = new int[N][N];
    static int[][] a = new int[N][N];

    public static void insert(int x1, int y1, int x2, int y2, int c){
        b[x1][y1] += c;
        b[x1][y2 + 1] -= c;
        b[x2 + 1][y1] -= c;
        b[x2 + 1][y2 + 1] += c;
    }

    public static void main(String[] args){
        Scanner scan = new Scanner(System.in);
        n = scan.nextInt();
        m = scan.nextInt();
        q = scan.nextInt();
        for (int i = 1; i <= n; i ++)
            for (int j = 1; j <= m; j ++){
                a[i][j] = scan.nextInt();
                insert(i, j, i, j, a[i][j]);
            }

        while (q -- > 0){
            int x1 = scan.nextInt();
            int y1 = scan.nextInt();
            int x2 = scan.nextInt();
            int y2 = scan.nextInt();
            int c = scan.nextInt();
            insert(x1, y1, x2, y2, c);
        }

        for (int i = 1; i <= n; i ++)
            for (int j = 1; j <= m; j ++)
                b[i][j] += b[i][j - 1] + b[i - 1][j] - b[i - 1][j - 1];

        for (int i = 1; i <= n; i ++){
            for (int j = 1; j <= m; j ++)
                System.out.print(b[i][j] + " ");
            System.out.println();
        }
    }
}

  • 49
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值