Balanced Substring—前缀和与差分(思维)

You are given a string s consisting only of characters 0 and 1. A substring [l, r] of s is a string slsl + 1sl + 2... sr, and its length

equals to r - l + 1. A substring is called balanced if the number of
zeroes (0) equals to the number of ones in this substring.

You have to determine the length of the longest balanced substring of s. Input

The first line contains n (1 ≤ n ≤ 100000) — the number of characters in s.

The second line contains a string s consisting of exactly n characters. Only characters 0 and 1 can appear in s. Output

If there is no non-empty balanced substring in s, print 0. Otherwise, print the length of the longest balanced substring.

Examples
Input

8
11010111

Output

4

Input

3
111

Output

0

Note

In the first example you can choose the substring [3, 6]. It is balanced, and its length is 4. Choosing the substring [2, 5] is also

possible.

In the second example it's impossible to find a non-empty balanced substring.

题解:
一开始用的暴力算法,果不其然,超时了
后来才知道这是一道前缀和的思维题,将0看作-1,将1看成1,实现过程就是从头到尾扫一遍,每次更新前缀和,若该前缀和已经出现过,当前位置与第一次出现的位置做差,利用这段差区间的长度去更新结果,扫的过程同时要记录每个前缀和最早出现的位置。

#include<iostream>
using namespace std;
int a[100005];
int sum[100005];
int main()
{
    std::ios::sync_with_stdio(false);
    int n;
    cin>>n;
    string s;
    cin>>s;
    for(int i=0;i<n;i++)
    {
        if(s[i]=='0')a[i+1]=-1;
        if(s[i]=='1')a[i+1]=1;
    }
    for(int i=1;i<=n;i++)
    {
        sum[i]=sum[i-1]+a[i];
    }
    int k=n,flag=0;
    while(k!=0&&flag==0)
    {
        for(int i=n;i-k>=0;i--)
        {
            if((sum[i]-sum[i-k])==0)
            {
                cout<<k<<endl;
                flag=1;
                break;
            }
        }
        k--;
    }
    if(flag==0)cout<<0<<endl;
    
}

这次是正确代码,有用到map

#include<iostream>
#include<map>
using namespace std;
const int N=1e5+10;
map<int,int>ind;
char s[N];
int n;
int main()
{
    cin>>n;
    scanf("%s",s+1);
    int len=0,sum=0;
    ind[0]=0;
    for(int i=1;i<=n;i++)
    {
        if(s[i]=='1')sum++;
        else sum--;
        if(ind.find(sum)==ind.end())ind[sum]=i;
        else len=max(len,i-ind[sum]);
    }
    cout<<len<<endl;
}

### 全差分放大器与差分放大器的区别 #### 区别 全差分放大器和差分放大器虽然都处理差分信号,但在结构和应用上存在显著差异。 - **输出形式** 差分放大器通常只有一个单端输出,而全差分放大器具有两个完全独立的差分输出。这种双端输出使得全差分放大器能够更好地抑制共模干扰并提高信噪比[^1]。 - **线性度和动态范围** 全差分放大器由于其对称的设计,在大信号条件下表现出更好的线性和更宽广的动态范围。相比之下,传统差分放大器可能会因为内部节点不对称而导致性能下降[^3]。 - **电源配置** 全差分放大器可以接受正负供电轨操作,这有助于维持良好的直流偏置条件以及更高的交流响应特性;而对于某些类型的差分放大器来说,仅支持单一极性的电源供应就显得不够灵活了。 #### 工作原理 ##### 差分放大器的工作原理 差分放大器的核心在于它接收一对相反相位的输入电压,并将其转换成相应的输出电压变化。理想情况下,当两路输入相同的时候(即共模),理论上不应该有净输出;然而实际器件会存在一定量级上的偏差——这就是所谓的“共模误差”。为了最小化这类影响,设计者们往往会采取措施使各部分参数尽可能一致,比如匹配电阻值等[^2]。 ```python def diff_amp(v_in_pos, v_in_neg): """ Simulate a simple differential amplifier. Args: v_in_pos (float): Positive input voltage. v_in_neg (float): Negative input voltage. Returns: float: Output voltage difference between inputs. """ gain = 100 # Example gain value output_voltage = gain * (v_in_pos - v_in_neg) return output_voltage ``` ##### 全差分放大器的工作原理 全差分架构进一步扩展了这一概念,不仅提供了上述提到的优点,还增加了额外的功能来增强整体表现力。具体而言: - 它利用反馈机制确保两端输出保持平衡状态; - 可以有效消除偶数阶谐波失真成分; - 更容易实现高精度测量任务所需的低失调漂移特性和温度稳定性要求。 ```python def fully_diff_amp(v_in_pos, v_in_neg): """ Simulate a full-differential amplifier with balanced outputs. Args: v_in_pos (float): Positive input voltage. v_in_neg (float): Negative input voltage. Returns: tuple[float, float]: A pair of complementary output voltages. """ common_mode_gain = 0 # Ideal case where there's no common-mode signal amplification diff_gain = 100 # Differential gain out_pos = diff_gain * ((v_in_pos + v_in_neg)/2) + common_mode_gain*(v_in_pos-v_in_neg) out_neg = -(diff_gain * ((v_in_pos + v_in_neg)/2)) + common_mode_gain*(v_in_pos-v_in_neg) return out_pos, out_neg ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值