Kruskal算法求最小生成树
给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 𝐺=(𝑉,𝐸),其中 V𝑉 表示图中点的集合,𝐸 表示图中边的集合,𝑛=|𝑉|,m=|E|。
由 𝑉 中的全部 𝑛 个顶点和 E 中 𝑛−1 条边构成的无向连通子图被称为 𝐺 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 𝐺 的最小生成树。
输入格式
第一行包含两个整数 𝑛 和 𝑚。
接下来 𝑚 行,每行包含三个整数 𝑢,𝑣,𝑤,表示点 𝑢 和点 𝑣 之间存在一条权值为 𝑤 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1≤n≤105,
1≤m≤2∗105,
图中涉及边的边权的绝对值均不超过 1000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
算法思路:
-
将所有边按照权值的大小进行升序排序,然后从小到大一一判断。
-
如果这个边与之前选择的所有边不会组成回路,就选择这条边分;反之,舍去。
-
直到具有 n 个顶点的连通网筛选出来 n-1 条边为止。
-
筛选出来的边和所有的顶点构成此连通网的最小生成树。
判断是否会产生回路的方法为:使用并查集。
-
在初始状态下给各个个顶点在不同的集合中。、
-
遍历过程的每条边,判断这两个顶点的是否在一个集合中。
-
如果边上的这两个顶点在一个集合中,说明两个顶点已经连通,这条边不要。如果不在一个集合中,则要这条边。
举个例子,下图一个连通网,克鲁斯卡尔算法查找图 1 对应的最小生成树,需要经历以下几个步骤:
-
将连通网中的所有边按照权值大小做升序排序:
-
从 B-D 边开始挑选,由于尚未选择任何边组成最小生成树,且 B-D 自身不会构成环路,所以 B-D 边可以组成最小生成树。
-
D-T 边不会和已选 B-D 边构成环路,可以组成最小生成树:
-
A-C 边不会和已选 B-D、D-T 边构成环路,可以组成最小生成树:
-
C-D 边不会和已选 A-C、B-D、D-T 边构成环路,可以组成最小生成树:
-
C-B 边会和已选 C-D、B-D 边构成环路,因此不能组成最小生成树:
-
B-T 、A-B、S-A 三条边都会和已选 A-C、C-D、B-D、D-T 构成环路,都不能组成最小生成树。而 S-A 不会和已选边构成环路,可以组成最小生成树。
-
如图下图 所示,对于一个包含 6 个顶点的连通网,我们已经选择了 5 条边,这些边组成的生成树就是最小生成树。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100010;
int p[N];//保存并查集
struct E{
int a;
int b;
int w;
bool operator < (const E& rhs){//通过边长进行排序
return this->w < rhs.w;
}
}edg[N * 2];
int res = 0;
int n, m;
int cnt = 0;
int find(int a){//并查集找祖宗
if(p[a] != a) p[a] = find(p[a]);
return p[a];
}
void klskr(){
for(int i = 1; i <= m; i++)//依次尝试加入每条边
{
int pa = find(edg[i].a);// a 点所在的集合
int pb = find(edg[i].b);// b 点所在的集合
if(pa != pb){//如果 a b 不在一个集合中
res += edg[i].w;//a b 之间这条边要
p[pa] = pb;// 合并a b
cnt ++; // 保留的边数量+1
}
}
}
int main()
{
cin >> n >> m;
for(int i = 1; i <= n; i++) p[i] = i;//初始化并查集
for(int i = 1; i <= m; i++){//读入每条边
int a, b , c;
cin >> a >> b >>c;
edg[i] = {a, b, c};
}
sort(edg + 1, edg + m + 1);//按边长排序
klskr();
//如果保留的边小于点数-1,则不能连通
if(cnt < n - 1) {
cout<< "impossible";
return 0;
}
cout << res;
return 0;
}
klskr();
//如果保留的边小于点数-1,则不能连通
if(cnt < n - 1) {
cout<< “impossible”;
return 0;
}
cout << res;
return 0;
}