2021牛客多校#4 E-Tree Xor

题目链接

传送门

题目大意

给定一棵 n ( 1 ≤ n ≤ 1 0 5 ) n(1 \leq n \leq 10^5) n(1n105)的节点的树,第 i i i个节点的权值为 W i W_i Wi
但并不知道 W i W_i Wi的值,只知道 W i W_i Wi ∣ L i , R i ∣ ( 0 ≤ L i ≤ R i ≤ 2 30 ) |L_i,R_i|(0 \leq L_i \leq R_i \leq 2^{30}) Li,Ri(0LiRi230)
( u , v ) (u,v) (u,v)两端点的异或值 W u ⊕ W v ( 0 ≤ W u ⊕ W v ≤ 2 30 ) W_u⊕W_v(0 \leq W_u⊕W_v \leq 2^{30}) WuWv(0WuWv230)
求W序列有几种可能。

题解

显而易见,如果知道了这棵树的某个节点,那么剩下的节点都可以得出,我们设根节点为 x x x,则它的子节点为 W i ⊕ x W_i⊕x Wix再往后推下去。
我们先将x进行拆解,分解出 [ x x x 11111 , x x x 00000 ] [xxx11111,xxx00000] [xxx11111,xxx00000](前面相同,后面完全相反)然后用dfs找到需要枚举满足 x ⊕ W i ≤ r x⊕W_i \leq r xWir x x x的取值(r表示实时长度)。
因为最大值有 2 30 2^{30} 230所以我们采用离散化的思想进行差分求解。

参考代码

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+5;
struct node1{int l,r;}q[N];
struct node2{int v,w,next;}e[N];
int n,cnt=0;
int head[N],val[N];
vector<pair<int,int>>ve[3];
void add(int u,int v,int w)         //初始化
{
	e[cnt].v=v;
	e[cnt].w=w;
	e[cnt].next=head[u];
	head[u]=cnt++;
}
void dfs(int u,int pre,int w)       //初始化
{
	val[u]=val[pre]^w;
	for(int i=head[u];i!=-1;i=e[i].next)
	{
		int vv=e[i].v;
		int ww=e[i].w;
		if(vv==pre)continue;
		dfs(vv,u,ww);
	}
}
void dfs1(int id,int pos,int vl,int r,int now)      //求解
{
	if(pos==-1)
	{
		ve[id].push_back({now,now});
		return;
	}
	int x=(vl>>pos)&1;
	int y=r>>pos&1;
	if(y==1)
	{
		if(x==1)
		{
			ve[id].push_back({now+(1<<pos),now+(1<<(pos+1))-1});
			dfs1(id,pos-1,vl,r,now);
		}
		else
		{
			ve[id].push_back({now,now+(1<<pos)-1});
			dfs1(id,pos-1,vl,r,now+(1<<pos));
		}
	}
	else
		if(x==1)dfs1(id,pos-1,vl,r,now+(1<<pos));
		else dfs1(id,pos-1,vl,r,now);
}
int solve()                    //差分
{
	vector<pair<int,int>>res;
	for(auto x:ve[1])
	{
		res.push_back({x.first,1});
		res.push_back({x.second+1,-1});
	}
	for(auto x:ve[0])
	{
		res.push_back({x.first,-1});
		res.push_back({x.second+1,1});
	}
	sort(res.begin(),res.end());
	int dep=0;
	int ans=0;
	for(int i=0;i<res.size();i++)
	{
		dep+=res[i].second;
		if(dep==n)
			if(i+1<res.size())ans+=res[i+1].first-res[i].first;
	}
	return ans;
}
int main()
{
	scanf("%d",&n);
	memset(head,-1,sizeof(head));
	for(int i=1;i<=n;i++)scanf("%d%d",&q[i].l,&q[i].r);
	for(int i=1;i<=n;i++)
	{
		int u,v,w;
		scanf("%d%d%d",&u,&v,&w);
		add(u,v,w);
		add(v,u,w);
	}
	dfs(1,0,0);
	for(int i=1;i<=n;i++)          //拆解
	{
		if(q[i].l>0)dfs1(0,29,val[i],q[i].l-1,0);
		dfs1(1,29,val[i],q[i].r,0);
	}
	printf("%d",solve());
}
### 联合活动 Chocolate 问题解题思路 #### 背景描述 在网的联合活动中,“Chocolate”问题是关于如何合理分配巧克力给朋友。具体来说,目标是通过K次切割将一块由个连续部分组成的巧克力分成K+1份,每一份都包含一些连续的部分。 #### 解决方案概述 为了有效地解决这个问题,可以采用动态规划的方法来寻找最优解法。该方法的核心在于定义状态转移方程以及初始化边界条件[^1]。 #### 动态规划实现细节 - **状态表示**:设`dp[i][j]`代表前i个块中做最j刀所能获得的最大价值。 - **初始条件**:当没有切分时(`j=0`),最大值即为整个区间的总和;对于其他情况,则需遍历所有可能的位置进行尝试。 - **状态转移**:对于每一个新的位置k,在其之前已经完成了一定数量的分割操作(j),此时需要计算从当前位置到起点之间的最小成本,并更新全局最优解。 ```python def max_chocolate_value(chunks, K): n = len(chunks) # 计算区间内的累积和用于快速求子数组之和 prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + chunks[i - 1] dp = [[float(&#39;-inf&#39;)] * (K + 1) for _ in range(n)] # 初始化第一列 for i in range(n): dp[i][0] = prefix_sum[i + 1] for j in range(K + 1): # 遍历每一刀数目的可能性 for i in range(n): # 当前考虑到第几个chunk为止 if j == 0 or i < j: continue for p in range(i): # 尝试不同的最后一刀位置p cost = abs(prefix_sum[p + 1] - prefix_sum[i + 1]) dp[i][j] = max(dp[i][j], min(dp[p][j - 1], cost)) return dp[-1][-1] ``` 此算法的时间复杂度主要取决于三重循环结构O(N^3*K),其中N为chunks的数量,K为允许的最大切割次数。虽然看起来效率不高但对于题目规模而言是可以接受的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值