2021牛客多校#4 G-Product

题目链接

传送门

题目大意

给定三个整数 n , k , D ( 1 ≤ n , k ≤ 50 , 0 ≤ D ≤ 1 0 8 ) n,k,D(1 \leq n,k \leq 50,0 \leq D \leq 10^8) n,k,D(1n,k50,0D108)
定义非负整数序列 a a a的权值为 D ! ∏ i = 1 n ( a i + k ) ! \frac{D!}{\prod\limits_{i=1}^{n}(a_i+k)!} i=1n(ai+k)!D!
求所有满足以下条件的非负整数序列 a a a的权值和:
1. ∀ ∈ [ 1 , n ] , a i ≥ 0 \forall\in[1,n],a_i \ge 0 [1,n],ai0
2. ∑ i = 1 n a i = D \sum_{i=1}^{n}a_i=D i=1nai=D
答案对 998244353 998244353 998244353取模。

题解

考虑以下题目给的公式,如果把 k k k去掉则原式变成 D ! ∏ i = 1 n ( a i ) ! \frac{D!}{\prod\limits_{i=1}^{n}(a_i)!} i=1n(ai)!D!
可以看出它是一个排列组合,表示为D个不同的球分解成n个组,每次取 a i a_i ai个球,求可能的方案数,易得解为 n D n^D nD。于是将原式中的 k k k合并。则原式还可以变为 D ! ∏ i = 1 n a i ! ( a i ≥ k   & &   ∑ i = 1 n a i = D + n k ) \frac{D!}{\prod\limits_{i=1}^{n}a_i!}(a_i \ge k \ \&\& \ \sum_{i=1}^{n}a_i=D+nk) i=1nai!D!(aik && i=1nai=D+nk)
然后我们想将 a i ≥ k a_i \ge k aik变为 a i ≥ 0 a_i \ge 0 ai0,因为在 a i ≥ 0 a_i \ge 0 ai0时的情况可以套用上面的。即 D ! ∏ i = 1 n a i ! = D ! ( D + n k ) ! ∑ i = 1 n ( D + n k ) ! ∏ a i ! ( a i ≥ 0   & &   ∑ i = 1 n a i = D + n k ) \frac{D!}{\prod\limits_{i=1}^{n}a_i!}=\frac{D!}{(D+nk)!}\sum_{i=1}^{n}\frac{(D+nk)!}{\prod{a_i!}}(a_i \ge 0 \ \&\& \ \sum_{i=1}^{n}a_i=D+nk) i=1nai!D!=(D+nk)!D!i=1nai!(D+nk)!(ai0 && i=1nai=D+nk)
经化简得 s = D ! ( D + n k ) ! n D + n k s=\frac{D!}{(D+nk)!}n^{D+nk} s=(D+nk)!D!nD+nk
然后我们要用求得的综合减掉不符合要求的综合得到真正答案。这里需要套入容斥原理(详见百度,自行学习)从上面可得 a i ≤ k a_i \leq k aik是不符合条件的,所以我们可以得到答案 a n s ans ans s s s减去奇数时总数的 a i ≤ k a_i \leq k aik,加上偶数时的答案。
为解决问题,我们定义 d p i , j dp_{i,j} dpi,j表示将j个不同的分解为i组,每组个数 < k <k <k的方案数。
所以得到答案 D ! ( D + n k ) ( 总 值 ) ∑ i = 0 n ( − 1 ) i ( 判 断 正 负 性 定 义 加 减 ) ∑ j = 0 i ( k − 1 ) ( 第 i 个 非 法 组 最 多 有 i ( k − 1 ) 个 ) C i n ( 组 数 ) ∗ C D + n k j ( 球 数 ) ∗ d p i , j ∗ ( n − i ) D + n k − j ( 合 法 情 况 D + n k − j 个 分 为 n − i 组 时 的 情 况 ) \frac{D!}{(D+nk)}(总值)\sum_{i=0}^{n}(-1)^i(判断正负性定义加减)\sum_{j=0}^{i(k-1)}(第i个非法组最多有i(k-1)个)C_{i}^{n}(组数)*C_{D+nk}^{j}(球数)*dp_{i,j}*(n-i)^{D+nk-j}(合法情况D+nk-j个分为n-i组时的情况) (D+nk)D!()i=0n(1)i()j=0i(k1)(iik1)CinCD+nkjdpi,j(ni)D+nkjD+nkjni
注意全程取模 m o d = 998244353 mod=998244353 mod=998244353防炸,用费马小定理进行逆元处理,快速幂加快速度。

参考代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll N=55,mod=998244353;
ll n,k,D,c[N*N+1][N*N+1],dp[N*N+1][N*N+1];
ll pow(ll a,ll b)
{
    ll ret=1;
    while(b)
    {
        if(b&1)
            ret=ret*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ret;
}
void init()
{
    for(int i=0;i<N*N;i++)
        c[i][0]=1;
    for(int i=1;i<N*N;i++)
        for(int j=1;j<=min(N,1ll*i);j++)
            c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
    dp[0][0]=1;
    for(int i=0;i<n;i++)
        for(int j=0;j<=i*(k-1);j++)
            for(int t=0;t<k;t++)
                dp[i+1][j+t]=(dp[i+1][j+t]+dp[i][j]*c[j+t][t]%mod)%mod;
}
int main()
{
    scanf("%lld %lld %lld",&n,&k,&D);
    init();
    D+=n*k;
    ll ans=0;
    for(int i=0;i<=n;i++)
    {
        ll yk=1;
        for(int j=0;j<=i*(k-1);j++)
        {
            int w=(i&1?mod-c[n][i]:c[n][i]);
            w=w*pow(n-i,D-j)%mod*dp[i][j]%mod*yk%mod;
            ans=(ans+w)%mod;
            yk=yk*(D-j)%mod*pow(1ll*j+1,mod-2)%mod;
        }
    }
    for(int i=D-n*k+1;i<=D;i++)
        ans=ans*pow(1ll*i,mod-2)%mod;
    printf("%lld\n",ans);
}

总结

代码我参考了逆十字的(人家27分钟的时候做完。。。),这是一道排列组合+DP的题目,草稿纸上的操作比代码版上的多多了。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值