db.runCommand({
distinct:"person",//表
key:"country"//为person表中的country去重
})
db.runCommand({group:{
ns:"persons",//集合的名称
key:{"country":true},//分组的键对象
initial:{m:0},//初始化累加器
$reduce:function(doc,prev){//分解器 会把累加器(prev)传入到分解器 doc表示当前的对象
if(doc.m > prev.m){
prev.m = doc.m;
prev.name = doc.name;
prev.country = doc.country;
}
},
condition:{m:{$gt:90}}
}})
db.runCommand({group:{
ns:"persons",
key:{"country":true},
initial:{m:0},
$reduce:function(doc,prev){
if(doc.m > prev.m){
prev.m = doc.m;
prev.name = doc.name;
prev.country = doc.country;
}
},
finalize:function(prev){
prev.m = prev.name+" Math scores "+prev.m
},
condition:{m:{$gt:90}}
}})
db.persons.insert({
name:"USPCAT",
age:27,
email:"2145567457@qq.com",
c:89,m:100,e:67,
counTry:"China",
books:["JS","JAVA","EXTJS","MONGODB"]
})
db.runCommand({group:{
ns:"persons",
$keyf:function(doc){
if(doc.counTry){
return {country:doc.counTry}
}else{
return {country:doc.country}
}
},
initial:{m:0},
$reduce:function(doc,prev){
if(doc.m > prev.m){
prev.m = doc.m;
prev.name = doc.name;
if(doc.country){
prev.country = doc.country;
}else{
prev.country = doc.counTry;
}
}
},
finalize:function(prev){
prev.m = prev.name+" Math scores "+prev.m
},
condition:{m:{$gt:90}}
}})
mongodb中的分组聚合用$group,它是不能进行sort的,而且处理的最大数据量为100M如果超出需要写入到磁盘,使用格式如下:
{ $group: { _id: <expression>, <field1>: { <accumulator1> : <expression1> }, ... } }
其中_id属性是必须要有的,目的是用来指定分组的字段或依据,field1为自定义字段,accumulator为累加器,下面以统计每天用户注册数为列
db.user.aggregate([ { $group:{ _id:{ year:{$year:"$time"},//time为注册时间 $year表示获取年份 month:{$month:"$time"},//$month获取月份 day:{$dayOfMonth:"$time"}//$dayOfMonth获取多少号 } count:{$sum:1}//$sum为累计,1表示累加数 } } ])
如果只想注册地区为四川的则在$goup前增加一个$match(match必须放在第一位):
{
$match:{
location:"SiChuan"
}
},
以上两个聚合操作的java实现方式:
DBObject filterCond = new BasicDBObject(); filterCond.put("location", "SiChuan"); DBObject match = new BasicDBObject("$match", filterCond); DBObject group = new BasicDBObject(); DBObject groupDate = new BasicDBObject(); groupDate.put("year", new BasicDBObject("$year", "$time")); groupDate.put("month", new BasicDBObject("$month", "$time")); groupDate.put("day", new BasicDBObject("$dayOfMonth", "$time")); group.put("$group", new BasicDBObject("_id", groupDate));
AggregationOutput output = coll.aggregate(match, group); Iterator iterator = output.results().iterator();
mongodb中的分组聚合用$group,它是不能进行sort的,而且处理的最大数据量为100M如果超出需要写入到磁盘,使用格式如下:
{ $group: { _id: <expression>, <field1>: { <accumulator1> : <expression1> }, ... } }
其中_id属性是必须要有的,目的是用来指定分组的字段或依据,field1为自定义字段,accumulator为累加器,下面以统计每天用户注册数为列
db.user.aggregate([ { $group:{ _id:{ year:{$year:"$time"},//time为注册时间 $year表示获取年份 month:{$month:"$time"},//$month获取月份 day:{$dayOfMonth:"$time"}//$dayOfMonth获取多少号 } count:{$sum:1}//$sum为累计,1表示累加数 } } ])
如果只想注册地区为四川的则在$goup前增加一个$match(match必须放在第一位):
{
$match:{
location:"SiChuan"
}
},
以上两个聚合操作的java实现方式:
DBObject filterCond = new BasicDBObject(); filterCond.put("location", "SiChuan"); DBObject match = new BasicDBObject("$match", filterCond); DBObject group = new BasicDBObject(); DBObject groupDate = new BasicDBObject(); groupDate.put("year", new BasicDBObject("$year", "$time")); groupDate.put("month", new BasicDBObject("$month", "$time")); groupDate.put("day", new BasicDBObject("$dayOfMonth", "$time")); group.put("$group", new BasicDBObject("_id", groupDate));
AggregationOutput output = coll.aggregate(match, group); Iterator iterator = output.results().iterator();
第一次写博客,才发现语言组织能力真差,累死了,下班~~~
更多的聚合操作请参见这》》》http://docs.mongodb.org/manual/reference/operator/aggregation-pipeline/